Global Biodiversity Scenarios for the Year 2100

American Association for the Advancement of Science (AAAS) - Tập 287 Số 5459 - Trang 1770-1774 - 2000
Osvaldo E. Sala1, F. Stuart Chapin, Iii.2, Juan J. Armestó3, Eric L. Berlow4, Janine Bloomfield5, Rodolfo Dirzo6, Elisabeth Huber-Sanwald7, Laura Huenneke8, Robert B. Jackson9, Ann P. Kinzig10, Rik Leemans11, David M. Lodge12, Harold A. Mooney13, Martı́n Oesterheld1, N. LeRoy Poff14, Martin T. Sykes15, Brian Walker16, Marilyn D. Walker17, Diana H. Wall18
1Department of Ecology and Instituto de Investigaciones Fisiológicas y Ecológicas vinculadas a la Agricultura, Faculty of Agronomy, University of Buenos Aires, Avenida San Martı́n 4453, Buenos Aires 1417, Argentina.
2Institute of Arctic Biology,
3Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
4Department of Integrative Biology, University of California, Berkeley, CA 94720 USA
5Environmental Defense Fund, 257 Park Avenue, New York, NY 10010, USA.
6Instituto de Ecologı́a, UNAM, México 04510, México.
7Lehrstuhl fur Grunlandlehre, Technische Universitat Munchen, D85350, Germany.
8Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
9Department of Botany, Duke University, Durham, NC 27708, USA
10Department of Biology, Arizona State University, Tempe, AZ 85287, USA
11National Institute for Public Health & the Environment, Bilthoven, Netherlands.
12Department of Biology, University of Notre Dame, Notre Dame, IN 46556–0369 USA.
13Department of Biological Sciences, Stanford University, Stanford, CA 94305 USA
14Department of Biology, and
15Ekologihuset, Lund University, 22362 Lund, Sweden.
16Division of Wildlife and Ecology, Commonwealth Scientific and Industrial Research Organization, Canberra, Australia.
17Institute of Northern Forest Cooperative Research, University of Alaska, Fairbanks, AK 99775, USA.
18Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523, USA

Tóm tắt

Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.

Từ khóa


Tài liệu tham khảo

10.1126/science.269.5222.347

We define change in biodiversity at the biome level as the changes in number and relative abundance of species that occur naturally in that biome.

Vitousek P. M., Ecology 75, 1861 (1994).

10.1126/science.277.5325.500

10.1126/science.277.5330.1300

G. C. Daily Ed. Nature's Services. Societal Dependence on Natural Ecosystems (Island Press Washington DC 1997).

10.1038/387253a0

B. H. Walker and W. Steffen Eds. Global Change and Terrestrial Ecosystems (Cambridge Univ. Press Cambridge 1996).

A. Kattenberg et al. in Climate Change: The IPCC Scientific Assessment J. T. Houghton et al. Eds. (Cambridge Univ. Press Cambridge 1996) pp. 285.

10.2307/1313420

Sisk T. D., Launer A. E., Switky K. R., Ehrlich P. R., BioScience 44, 592 (1994).

Haxeltine A., Prentice I. C., Global Biogeochem. Cycles 10, 693 (1996).

J. Alcamo Image 2: Integrated Modeling of Global Climate Change (Kluwer Academic Dordrecht Netherlands 1994).

R. G. Bailey Ecoregions: The Ecosystem Geography of the Oceans and Continents (Springer-Verlag New York 1998).

Fung I. Y., Tucker C. J., Prentice K. C., J. Geophys. Res. 92D, 2999 (1987).

J. A. Drake et al. Biological Invasions: A Global Perspective (Wiley Chichester UK 1989) vol. 37.

O. E. Sala in Global Biodiversity Assessment Section 5 H. A. Mooney J. Lubchenco R. Dirzo O. E. Sala Eds. (Cambridge Univ. Press Cambridge 1995).

J. M. Anderson in Global Biodiversity Assessment: Section 6 H. A. Mooney J. Lubchenco R. Dirzo O. E. Sala Eds. (Cambridge Univ. Press Cambridge 1995) pp. 406–412.

Mooney H. A., Drake B. G., Luxmoore R. J., Oechel W. C., Pitelka L. F., BioScience 41, 96 (1991).

Jackson R. B., Sala O. E., Field C. B., Mooney H. A., Oecologia 98, 257 (1994).

H. A. Mooney et al. in The Terrestrial Biosphere and Global Change: Implications for Natural and Managed Ecosystems: A Synthesis of GCTE and Related Research B. H. Walker W. L. Steffen J. Canadell J. S. I. Ingram Eds. (Cambridge Univ. Press Cambridge 1999) pp. 141–189.

Tilman D., Ecology. 74, 2179 (1993).

Vitousek P. M., Ecology 65, 285 (1984).

Billings W. D., BioScience 23, 697 (1973).

M. Rejmánek in Biodiversity and Ecosystem Processes in Tropical Forests G. H. Orians R. Dirzo J. H. Cushman Eds. (Springer-Verlag Berlin 1996) pp. 153–172.

Mooney H. A., Dunn E. L., Evolution 24, 292 (1970).

P. M. Vitousek L. Loope H. Adsersen Eds. Islands: Biological Diversity and Ecosystem Function (Springer-Verlag Berlin 1995).

W. Scott Overton in Ecosystem Modeling in Theory and Practice: An Introduction with Case Studies C. A. S. Hall and J. W. Day Eds. (Wiley New York 1977) pp. 49–74.

Committee on Inland Aquatic Ecosystems Water and Science Technology Board Commission on Geosciences Environment and Resources Freshwater Ecosystems (National Academy Press Washington DC 1996).

10.1126/science.271.5250.785

Lodge D. M., et al., Aust. J. Ecol. 23, 53 (1998).

Schindler D. W., BioScience 48, 157 (1998).

10.1046/j.1523-1739.1999.98380.x

Harding J. S., Benfield E. F., Bolstad P. V., Helfman G. S., Jones E. B. D., Proc. Natl. Acad. Sci. U.S.A. 95, 14843 (1998).

Richter B. D., Braun D. P., Mendelson M. A., Master L. L., Conserv. Biol. 11, 1081 (1997).

M. W. Oswood A. M. Milner J. G. Irons in Global Climate Change and Freshwater Ecosystems P. Firth and S. G. Fischer Eds. (Springer-Verlag New York 1992) pp. 192–210.

10.2307/1313099

T. Houghton et al. Eds. Climate Change 1995: The Science of Climate Change (Cambridge Univ. Press Cambridge 1996).

F. S. Chapin III O. E. Sala E. Huber-Sanwald Eds. Future Scenarios of Global Biodiversity (Springer-Verlag New York in press).

Supported by University of California Santa Barbara National Center for Ecological Analysis and Synthesis InterAmerican Institute for Global Change Research National Science Foundation OCE-9634876 Consejo Superior de Investigaciones Cientı́ficas y Técnicas University of Buenos Aires and Fondo para la Investigación Cientı́fica y Tecnológica de la Agencia Nacional de Promoción Cientı́fica y Tecnológica. This exercise stems from an activity of the Global Change and Terrestrial Ecosystems (GCTE) core project of the International Geosphere-Biosphere Programme (IGBP). We thank A. T. Austin D. Tilman and W. Reid for their useful suggestions. A. E. Sala and J. P. Guerschman provided valuable assistance.