Glioblastoma: Pathogenesis and Current Status of Chemotherapy and Other Novel Treatments

Cancers - Tập 12 Số 4 - Trang 937
Vilashini Rajaratnam1, Mohammad Mohiminul Islam1, Maixee Yang1, Rachel Slaby1, Hilda Martinez Ramirez1, Shama P. Mirza1
1Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, WI 53201, USA

Tóm tắt

Glioblastoma is one of the most common and detrimental forms of solid brain tumor, with over 10,000 new cases reported every year in the United States. Despite aggressive multimodal treatment approaches, the overall survival period is reported to be less than 15 months after diagnosis. A widely used approach for the treatment of glioblastoma is surgical removal of the tumor, followed by radiotherapy and chemotherapy. While there are several drugs available that are approved by the Food and Drug Administration (FDA), significant efforts have been made in recent years to develop new chemotherapeutic agents for the treatment of glioblastoma. This review describes the molecular targets and pathogenesis as well as the current progress in chemotherapeutic development and other novel therapies in the clinical setting for the treatment of glioblastoma.

Từ khóa


Tài liệu tham khảo

Ostrom, 2018, CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011-2015, Neuro Oncol., 20, iv1, 10.1093/neuonc/noy131

Anjum, 2017, Current status and future therapeutic perspectives of glioblastoma multiforme (GBM) therapy: A review, Biomed. Pharmacother., 92, 681, 10.1016/j.biopha.2017.05.125

Ferguson, 2005, Percival Bailey and the classification of brain tumors, Neurosurg. Focus, 18, e7, 10.3171/foc.2005.18.4.8

Zulch, 1968, Pathology and Classification of Gliomas, Progress in Neurological Surgery, Volume 2, 1

Louis, 2014, International Society Of Neuropathology--Haarlem consensus guidelines for nervous system tumor classification and grading, Brain Pathol., 24, 429, 10.1111/bpa.12171

Louis, 2016, The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary, Acta Neuropathol., 131, 803, 10.1007/s00401-016-1545-1

Huang, 2018, Final results of a phase I dose-escalation, dose-expansion study of adding disulfiram with or without copper to adjuvant temozolomide for newly diagnosed glioblastoma, J. Neurooncol., 138, 105, 10.1007/s11060-018-2775-y

Cancer, I.A.f.R.o. (2016). WHO Classification of Tumours of the Central Nervous System, WTO.

Stöppler, M.C., Shiel, W.C., Credo Reference (Firm), and WebMD (Firm) (2014). Webster’s New World Medical Dictionary, Wiley. [3rd ed.].

Shaw, 2018, Tumour heterogeneity and resistance to cancer therapies, Nat. Rev. Clin. Oncol., 15, 81, 10.1038/nrclinonc.2017.166

Yamaguchi, 2012, The impact of extent of resection and histological subtype on the outcome of adult patients with high-grade gliomas, Jpn. J. Clin. Oncol., 42, 270, 10.1093/jjco/hys016

Wrensch, 2002, Epidemiology of primary brain tumors: Current concepts and review of the literature, Neuro Oncol., 4, 278, 10.1093/neuonc/4.4.278

Preusser, 2011, Current concepts and management of glioblastoma, Ann. Neurol., 70, 9, 10.1002/ana.22425

Aoki, 2007, Management of glioblastoma, Expert Opin. Pharmacother., 8, 3133, 10.1517/14656566.8.18.3133

Sanai, 2012, Recent surgical management of gliomas, Adv. Exp. Med. Biol., 746, 12, 10.1007/978-1-4614-3146-6_2

Young, 2015, Current trends in the surgical management and treatment of adult glioblastoma, Ann. Transl. Med., 3, 121

Ryken, 2008, Surgical management of newly diagnosed glioblastoma in adults: Role of cytoreductive surgery, J. Neurooncol., 89, 271, 10.1007/s11060-008-9614-5

Barbagallo, 2008, ’Recurrent’ glioblastoma multiforme, when should we reoperate?, Br. J. Neurosurg., 22, 452, 10.1080/02688690802182256

Cabrera, 2016, Radiation therapy for glioblastoma: Executive summary of an American Society for Radiation Oncology Evidence-Based Clinical Practice Guideline, Pract. Radiat. Oncol., 6, 217, 10.1016/j.prro.2016.03.007

Minniti, 2017, Radiation therapy for older patients with brain tumors, Radiat. Oncol., 12, 101, 10.1186/s13014-017-0841-9

Mann, 2017, Advances in Radiotherapy for Glioblastoma, Front. Neurol., 8, 748, 10.3389/fneur.2017.00748

Corso, 2017, The role of radiation in treating glioblastoma: Here to stay, J. Neurooncol., 134, 479, 10.1007/s11060-016-2348-x

Fedoy, 2007, Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium Desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability, J. Mol. Biol., 372, 130, 10.1016/j.jmb.2007.06.040

Kaminska, B., Czapski, B., Guzik, R., Krol, S.K., and Gielniewski, B. (2019). Consequences of IDH1/2 Mutations in Gliomas and an Assessment of Inhibitors Targeting Mutated IDH Proteins. Molecules, 24.

Parsons, 2008, An integrated genomic analysis of human glioblastoma multiforme, Science, 321, 1807, 10.1126/science.1164382

Cohen, 2013, IDH1 and IDH2 mutations in gliomas, Curr. Neurol. Neurosci. Rep., 13, 345, 10.1007/s11910-013-0345-4

Turkalp, 2014, IDH mutation in glioma: New insights and promises for the future, JAMA Neurol., 71, 1319, 10.1001/jamaneurol.2014.1205

Lemieux, 2018, Discovery of AG-120 (Ivosidenib): A First-in-Class Mutant IDH1 Inhibitor for the Treatment of IDH1 Mutant Cancers, ACS Med. Chem. Lett., 9, 300, 10.1021/acsmedchemlett.7b00421

Rohle, 2013, An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells, Science, 340, 626, 10.1126/science.1236062

Huang, 2019, Isocitrate Dehydrogenase Mutations in Glioma: From Basic Discovery to Therapeutics Development, Front. Oncol., 9, 506, 10.3389/fonc.2019.00506

Lino, M.M., Merlo, A., and Boulay, J.L. (2010). Notch signaling in glioblastoma: A developmental drug target?. BMC Med., 8.

Yan, 2018, Molecular mechanism of Notch signaling with special emphasis on microRNAs: Implications for glioma, J. Cell. Physiol., 234, 158, 10.1002/jcp.26775

Fan, 2010, NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts, Stem Cells, 28, 5, 10.1002/stem.254

Bazzoni, R., and Bentivegna, A. (2019). Role of Notch Signaling Pathway in Glioblastoma Pathogenesis. Cancers (Basel), 11.

Ying, 2011, Regulation of glioblastoma stem cells by retinoic acid: Role for Notch pathway inhibition, Oncogene, 30, 3454, 10.1038/onc.2011.58

Hovinga, 2010, Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate, Stem Cells, 28, 1019, 10.1002/stem.429

Morad, 2013, Ceramide-orchestrated signalling in cancer cells, Nat. Rev. Cancer, 13, 51, 10.1038/nrc3398

Doan, 2017, Acid ceramidase confers radioresistance to glioblastoma cells, Oncol. Rep., 38, 1932, 10.3892/or.2017.5855

Nguyen, H.S., Awad, A.J., Shabani, S., and Doan, N. (2018). Molecular Targeting of Acid Ceramidase in Glioblastoma: A Review of Its Role, Potential Treatment, and Challenges. Pharmaceutics, 10.

Doan, 2017, Acid ceramidase and its inhibitors: A de novo drug target and a new class of drugs for killing glioblastoma cancer stem cells with high efficiency, Oncotarget, 8, 112662, 10.18632/oncotarget.22637

Doan, 2017, Acid ceramidase is a novel drug target for pediatric brain tumors, Oncotarget, 8, 24753, 10.18632/oncotarget.15800

Alifieris, 2015, Glioblastoma multiforme: Pathogenesis and treatment, Pharmacol. Ther., 152, 63, 10.1016/j.pharmthera.2015.05.005

Wick, 2011, Pathway inhibition: Emerging molecular targets for treating glioblastoma, Neuro Oncol., 13, 566, 10.1093/neuonc/nor039

Zirlik, 2018, Anti-Angiogenics: Current Situation and Future Perspectives, Oncol. Res. Treat., 41, 166, 10.1159/000488087

Okuda, 2017, Efficacy of Combination Therapy with MET and VEGF Inhibitors for MET-overexpressing Glioblastoma, Anticancer Res., 37, 3871

Weathers, 2015, VEGF Manipulation in Glioblastoma, Oncology (Williston Park), 29, 720

Liu, 2018, PDGF-mediated mesenchymal transformation renders endothelial resistance to anti-VEGF treatment in glioblastoma, Nat. Commun., 9, 3439, 10.1038/s41467-018-05982-z

Mischel, 2003, Targeted molecular therapy of GBM, Brain Pathol., 13, 52, 10.1111/j.1750-3639.2003.tb00006.x

Shih, 2006, Platelet-derived growth factor (PDGF) and glial tumorigenesis, Cancer Lett., 232, 139, 10.1016/j.canlet.2005.02.002

Heldin, 2013, Targeting the PDGF signaling pathway in tumor treatment, Cell Commun. Signal., 11, 97, 10.1186/1478-811X-11-97

Cantanhede, 2017, PDGF Family Expression in Glioblastoma Multiforme: Data Compilation from Ivy Glioblastoma Atlas Project Database, Sci. Rep., 7, 15271, 10.1038/s41598-017-15045-w

Westermark, 2014, Platelet-derived growth factor in glioblastoma-driver or biomarker?, Ups. J. Med. Sci., 119, 298, 10.3109/03009734.2014.970304

Popescu, 2015, Targeting the VEGF and PDGF signaling pathway in glioblastoma treatment, Int. J. Clin. Exp. Pathol., 8, 7825

Hong, 2017, Silencing platelet-derived growth factor receptor-beta enhances the radiosensitivity of C6 glioma cells in vitro and in vivo, Oncol. Lett., 14, 329, 10.3892/ol.2017.6143

Cenciarelli, 2014, PDGF receptor alpha inhibition induces apoptosis in glioblastoma cancer stem cells refractory to anti-Notch and anti-EGFR treatment, Mol. Cancer, 13, 247, 10.1186/1476-4598-13-247

Ohgaki, 2007, Genetic pathways to primary and secondary glioblastoma, Am. J. Pathol., 170, 1445, 10.2353/ajpath.2007.070011

Watanabe, 1996, Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas, Brain Pathol., 6, 217, 10.1111/j.1750-3639.1996.tb00848.x

Kraus, 2002, Molecular genetic analysis of the TP53, PTEN, CDKN2A, EGFR, CDK4 and MDM2 tumour-associated genes in supratentorial primitive neuroectodermal tumours and glioblastomas of childhood, Neuropathol. Appl. Neurobiol., 28, 325, 10.1046/j.1365-2990.2002.00413.x

Ohgaki, 2004, Genetic pathways to glioblastoma: A population-based study, Cancer Res., 64, 6892, 10.1158/0008-5472.CAN-04-1337

Westphal, 2017, EGFR as a Target for Glioblastoma Treatment: An Unfulfilled Promise, CNS Drugs, 31, 723, 10.1007/s40263-017-0456-6

Felsberg, 2017, Epidermal Growth Factor Receptor Variant III (EGFRvIII) Positivity in EGFR-Amplified Glioblastomas: Prognostic Role and Comparison between Primary and Recurrent Tumors, Clin. Cancer Res., 23, 6846, 10.1158/1078-0432.CCR-17-0890

Halatsch, 2004, Inverse correlation of epidermal growth factor receptor messenger RNA induction and suppression of anchorage-independent growth by OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in glioblastoma multiforme cell lines, J. Neurosurg., 100, 523, 10.3171/jns.2004.100.3.0523

Reardon, 2013, A phase I/II trial of pazopanib in combination with lapatinib in adult patients with relapsed malignant glioma, Clin. Cancer Res., 19, 900, 10.1158/1078-0432.CCR-12-1707

Conciatori, F., Bazzichetto, C., Falcone, I., Pilotto, S., Bria, E., Cognetti, F., Milella, M., and Ciuffreda, L. (2018). Role of mTOR Signaling in Tumor Microenvironment: An Overview. Int. J. Mol. Sci., 19.

Mecca, 2018, Targeting mTOR in Glioblastoma: Rationale and Preclinical/Clinical Evidence, Dis. Markers, 2018, 9230479, 10.1155/2018/9230479

Carballo, 2018, A highlight on Sonic hedgehog pathway, Cell Commun. Signal., 16, 11, 10.1186/s12964-018-0220-7

Mantamadiotis, T. (2017). Towards Targeting PI3K-Dependent Regulation of Gene Expression in Brain Cancer. Cancers (Basel), 9.

Lino, 2011, PI3Kinase signaling in glioblastoma, J. Neurooncol., 103, 417, 10.1007/s11060-010-0442-z

Janbazian, 2014, Mouse models of glioblastoma: Lessons learned and questions to be answered, J. Neurooncol., 118, 1, 10.1007/s11060-014-1401-x

Romano, 2012, PTEN gene: A model for genetic diseases in dermatology, ScientificWorldJournal, 2012, 252457, 10.1100/2012/252457

Lester, 2017, Combining PARP inhibitors with radiation therapy for the treatment of glioblastoma: Is PTEN predictive of response?, Clin. Transl. Oncol., 19, 273, 10.1007/s12094-016-1547-4

2017, Apoptotic Signaling Pathways in Glioblastoma and Therapeutic Implications, Biomed. Res. Int., 2017, 7403747

Hill, V.K., Kim, J.S., James, C.D., and Waldman, T. (2017). Correction of PTEN mutations in glioblastoma cell lines via AAV-mediated gene editing. PLoS ONE, 12.

Liu, 2014, Targeting glioma stem cells via the Hedgehog signaling pathway, Neuroimmunol. Neuroinflammation, 1, 9

Takezaki, 2011, Essential role of the Hedgehog signaling pathway in human glioma-initiating cells, Cancer Sci., 102, 1306, 10.1111/j.1349-7006.2011.01943.x

Rimkus, T.K., Carpenter, R.L., Qasem, S., Chan, M., and Lo, H.W. (2016). Targeting the Sonic Hedgehog Signaling Pathway: Review of Smoothened and GLI Inhibitors. Cancers (Basel), 8.

Nanta, 2019, Inhibition of sonic hedgehog and PI3K/Akt/mTOR pathways cooperate in suppressing survival, self-renewal and tumorigenic potential of glioblastoma-initiating cells, Mol. Cell. Biochem., 454, 11, 10.1007/s11010-018-3448-z

Stupp, 2005, Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma, N. Engl. J. Med., 352, 987, 10.1056/NEJMoa043330

Cohen, 2009, FDA drug approval summary: Bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme, Oncologist, 14, 1131, 10.1634/theoncologist.2009-0121

Stupp, 2009, Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial, Lancet Oncol., 10, 459, 10.1016/S1470-2045(09)70025-7

Davis, 2016, Glioblastoma: Overview of Disease and Treatment, Clin. J. Oncol. Nurs., 20, S2, 10.1188/16.CJON.S1.2-8

Gilbert, 2014, A randomized trial of bevacizumab for newly diagnosed glioblastoma, N. Engl. J. Med., 370, 699, 10.1056/NEJMoa1308573

Chowdhary, 2015, Survival outcomes and safety of carmustine wafers in the treatment of high-grade gliomas: A meta-analysis, J. Neurooncol., 122, 367, 10.1007/s11060-015-1724-2

Song, 2019, Phase I trial of alisertib with concurrent fractionated stereotactic re-irradiation for recurrent high grade gliomas, Radiother. Oncol, 132, 135, 10.1016/j.radonc.2018.12.019

Herrlinger, 2019, Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): A randomised, open-label, phase 3 trial, Lancet, 393, 678, 10.1016/S0140-6736(18)31791-4

Huang, 2019, A multicenter phase II study of temozolomide plus disulfiram and copper for recurrent temozolomide-resistant glioblastoma, J. Neurooncol., 142, 537, 10.1007/s11060-019-03125-y

Silvani, 2019, Multicenter, single arm, phase II trial on the efficacy of ortataxel in recurrent glioblastoma, J. Neurooncol., 142, 455, 10.1007/s11060-019-03116-z

Wen, 2019, Buparlisib in Patients With Recurrent Glioblastoma Harboring Phosphatidylinositol 3-Kinase Pathway Activation: An Open-Label, Multicenter, Multi-Arm, Phase II Trial, J. Clin. Oncol., 37, 741, 10.1200/JCO.18.01207

Lombardi, 2019, Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): A multicentre, open-label, randomised, controlled, phase 2 trial, Lancet Oncol., 20, 110, 10.1016/S1470-2045(18)30675-2

Lieberman, 2019, Phase 2 Study of Radiation Therapy Plus Low-Dose Temozolomide Followed by Temozolomide and Irinotecan for Glioblastoma: NRG Oncology RTOG Trial 0420, Int. J. Radiat. Oncol. Biol. Phys., 103, 878, 10.1016/j.ijrobp.2018.11.008

Krauze, 2018, Late toxicity in long-term survivors from a phase 2 study of concurrent radiation therapy, temozolomide and valproic acid for newly diagnosed glioblastoma, Neurooncol. Pract., 5, 246

Maraka, 2019, Phase 1 lead-in to a phase 2 factorial study of temozolomide plus memantine, mefloquine, and metformin as postradiation adjuvant therapy for newly diagnosed glioblastoma, Cancer, 125, 424, 10.1002/cncr.31811

Brandes, 2019, A Randomized Phase II Trial (TAMIGA) Evaluating the Efficacy and Safety of Continuous Bevacizumab Through Multiple Lines of Treatment for Recurrent Glioblastoma, Oncologist, 24, 521, 10.1634/theoncologist.2018-0290

Bota, 2018, Phase II study of ERC1671 plus bevacizumab versus bevacizumab plus placebo in recurrent glioblastoma: Interim results and correlations with CD4(+) T-lymphocyte counts, CNS Oncol., 7, CNS22, 10.2217/cns-2018-0009

Taylor, 2018, Phase-2 trial of palbociclib in adult patients with recurrent RB1-positive glioblastoma, J. Neurooncol., 140, 477, 10.1007/s11060-018-2977-3

Blakeley, 2019, Phase II Study of Iniparib with Concurrent Chemoradiation in Patients with Newly Diagnosed Glioblastoma, Clin. Cancer Res., 25, 73, 10.1158/1078-0432.CCR-18-0110

Lassman, 2019, Safety and efficacy of depatuxizumab mafodotin + temozolomide in patients with EGFR-amplified, recurrent glioblastoma: Results from an international phase I multicenter trial, Neuro Oncol., 21, 106, 10.1093/neuonc/noy091

Marinelli, 2018, High-dose fotemustine in temozolomide-pretreated glioblastoma multiforme patients: A phase I/II trial, Medicine (Baltimore), 97, e11254, 10.1097/MD.0000000000011254

Sanai, 2018, Phase 0 Trial of AZD1775 in First-Recurrence Glioblastoma Patients, Clin. Cancer Res., 24, 3820, 10.1158/1078-0432.CCR-17-3348

Kong, 2018, Phase 2 Study of Bortezomib Combined With Temozolomide and Regional Radiation Therapy for Upfront Treatment of Patients With Newly Diagnosed Glioblastoma Multiforme: Safety and Efficacy Assessment, Int. J. Radiat. Oncol. Biol. Phys., 100, 1195, 10.1016/j.ijrobp.2018.01.001

Omuro, 2018, Multicenter Phase IB Trial of Carboxyamidotriazole Orotate and Temozolomide for Recurrent and Newly Diagnosed Glioblastoma and Other Anaplastic Gliomas, J. Clin. Oncol., 36, 1702, 10.1200/JCO.2017.76.9992

Wirsching, 2018, Bevacizumab plus hypofractionated radiotherapy versus radiotherapy alone in elderly patients with glioblastoma: The randomized, open-label, phase II ARTE trial, Ann. Oncol., 29, 1423, 10.1093/annonc/mdy120

Wakabayashi, 2018, JCOG0911 INTEGRA study: A randomized screening phase II trial of interferonbeta plus temozolomide in comparison with temozolomide alone for newly diagnosed glioblastoma, J. Neurooncol., 138, 627, 10.1007/s11060-018-2831-7

Chinot, 2018, Temozolomide Plus Bevacizumab in Elderly Patients with Newly Diagnosed Glioblastoma and Poor Performance Status: An ANOCEF Phase II Trial (ATAG), Oncologist, 23, 524, 10.1634/theoncologist.2017-0689

Schiff, 2018, Phase 1/2 trial of temsirolimus and sorafenib in the treatment of patients with recurrent glioblastoma: North Central Cancer Treatment Group Study/Alliance N0572, Cancer, 124, 1455, 10.1002/cncr.31219

Reardon, 2018, Phase 2 and biomarker study of trebananib, an angiopoietin-blocking peptibody, with and without bevacizumab for patients with recurrent glioblastoma, Cancer, 124, 1438, 10.1002/cncr.31172

Peters, 2018, Phase I/II trial of vorinostat, bevacizumab, and daily temozolomide for recurrent malignant gliomas, J. Neurooncol., 137, 349, 10.1007/s11060-017-2724-1

Ghiaseddin, 2018, Phase II Study of Bevacizumab and Vorinostat for Patients with Recurrent World Health Organization Grade 4 Malignant Glioma, Oncologist, 23, 157, 10.1634/theoncologist.2017-0501

Chinnaiyan, 2018, A randomized phase II study of everolimus in combination with chemoradiation in newly diagnosed glioblastoma: Results of NRG Oncology RTOG 0913, Neuro Oncol., 20, 666, 10.1093/neuonc/nox209

Aiken, 2017, Phase I clinical trial of AXL1717 for treatment of relapsed malignant astrocytomas: Analysis of dose and response, Oncotarget, 8, 81501, 10.18632/oncotarget.20662

Chi, 2017, A phase 2 study of the first imipridone ONC201, a selective DRD2 antagonist for oncology, administered every three weeks in recurrent glioblastoma, Oncotarget, 8, 79298, 10.18632/oncotarget.17837

Omuro, 2018, Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: Results from exploratory phase I cohorts of CheckMate 143, Neuro Oncol., 20, 674, 10.1093/neuonc/nox208

Cloughesy, 2018, Phase II study of cabozantinib in patients with progressive glioblastoma: Subset analysis of patients with prior antiangiogenic therapy, Neuro Oncol., 20, 259, 10.1093/neuonc/nox151

Wen, 2018, Phase II study of cabozantinib in patients with progressive glioblastoma: Subset analysis of patients naive to antiangiogenic therapy, Neuro Oncol., 20, 249, 10.1093/neuonc/nox154

Galanis, 2018, Phase I/II trial of vorinostat combined with temozolomide and radiation therapy for newly diagnosed glioblastoma: Results of Alliance N0874/ABTC 02, Neuro Oncol., 20, 546, 10.1093/neuonc/nox161

Nghiemphu, 2018, Phase I study of sorafenib and tipifarnib for recurrent glioblastoma: NABTC 05-02, J. Neurooncol., 136, 79, 10.1007/s11060-017-2624-4

Duerinck, 2018, Randomized phase II trial comparing axitinib with the combination of axitinib and lomustine in patients with recurrent glioblastoma, J. Neurooncol., 136, 115, 10.1007/s11060-017-2629-z

Weller, 2017, Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): A randomised, double-blind, international phase 3 trial, Lancet Oncol., 18, 1373, 10.1016/S1470-2045(17)30517-X

Badruddoja, 2017, Phase II study of bi-weekly temozolomide plus bevacizumab for adult patients with recurrent glioblastoma, Cancer Chemother. Pharmacol., 80, 715, 10.1007/s00280-017-3405-7

Fariselli, 2017, Short course radiotherapy concomitant with temozolomide in GBM patients: A phase II study, Tumori, 103, 457, 10.5301/tj.5000672

Yu, 2017, Report of safety of pulse dosing of lapatinib with temozolomide and radiation therapy for newly-diagnosed glioblastoma in a pilot phase II study, J. Neurooncol., 134, 357, 10.1007/s11060-017-2533-6

Vaz, 2017, Phase II trial of dacomitinib, a pan-human EGFR tyrosine kinase inhibitor, in recurrent glioblastoma patients with EGFR amplification, Neuro Oncol., 19, 1522, 10.1093/neuonc/nox105

Ahmed, 2017, HER2-Specific Chimeric Antigen Receptor-Modified Virus-Specific T Cells for Progressive Glioblastoma: A Phase 1 Dose-Escalation Trial, JAMA Oncol., 3, 1094, 10.1001/jamaoncol.2017.0184

Clarke, 2017, A phase 1 trial of intravenous liposomal irinotecan in patients with recurrent high-grade glioma, Cancer Chemother. Pharmacol., 79, 603, 10.1007/s00280-017-3247-3

Ursu, 2017, Intracerebral injection of CpG oligonucleotide for patients with de novo glioblastoma-A phase II multicentric, randomised study, Eur. J. Cancer, 73, 30, 10.1016/j.ejca.2016.12.003

Nayak, 2017, Phase I trial of aflibercept (VEGF trap) with radiation therapy and concomitant and adjuvant temozolomide in patients with high-grade gliomas, J. Neurooncol., 132, 181, 10.1007/s11060-016-2357-9

Cloughesy, 2017, Randomized, Double-Blind, Placebo-Controlled, Multicenter Phase II Study of Onartuzumab Plus Bevacizumab Versus Placebo Plus Bevacizumab in Patients With Recurrent Glioblastoma: Efficacy, Safety, and Hepatocyte Growth Factor and O(6)-Methylguanine-DNA Methyltransferase Biomarker Analyses, J. Clin. Oncol., 35, 343, 10.1200/JCO.2015.64.7685

Chandra, 2017, Phase II study of tivozanib, an oral VEGFR inhibitor, in patients with recurrent glioblastoma, J. Neurooncol., 131, 603, 10.1007/s11060-016-2332-5

Phuphanich, 2017, Phase II study of MEDI-575, an anti-platelet-derived growth factor-alpha antibody, in patients with recurrent glioblastoma, J. Neurooncol., 131, 185, 10.1007/s11060-016-2287-6

McCracken, 2016, Phase I trial of dose-escalating metronomic temozolomide plus bevacizumab and bortezomib for patients with recurrent glioblastoma, J. Neurooncol., 130, 193, 10.1007/s11060-016-2234-6

Aoki, 2017, Phase I/II Study of Temozolomide Plus Nimustine Chemotherapy for Recurrent Malignant Gliomas: Kyoto Neuro-oncology Group, Neurol. Med. Chir. (Tokyo), 57, 17, 10.2176/nmc.oa.2016-0162

Batchelor, 2017, Feasibility, phase I, and phase II studies of tandutinib, an oral platelet-derived growth factor receptor-beta tyrosine kinase inhibitor, in patients with recurrent glioblastoma, Neuro Oncol., 19, 567

Sautter, 2019, Open-Label Phase II Evaluation of Imatinib in Primary Inoperable or Incompletely Resected and Recurrent Glioblastoma, Oncology, 98, 1

Hainsworth, 2019, Phase I/II study of bevacizumab with BKM120, an oral PI3K inhibitor, in patients with refractory solid tumors (phase I) and relapsed/refractory glioblastoma (phase II), J. Neurooncol., 144, 303, 10.1007/s11060-019-03227-7

Kaley, 2019, Phase II trial of an AKT inhibitor (perifosine) for recurrent glioblastoma, J. Neurooncol., 144, 403, 10.1007/s11060-019-03243-7

Sharma, 2019, Phase II study of Dovitinib in recurrent glioblastoma, J. Neurooncol., 144, 359, 10.1007/s11060-019-03236-6

Du, 2019, Efficacy and safety of nimotuzumab in addition to radiotherapy and temozolomide for cerebral glioblastoma: A phase II multicenter clinical trial, J. Cancer, 10, 3214, 10.7150/jca.30123

Lee, 2019, Phase II trial of ponatinib in patients with bevacizumab-refractory glioblastoma, Cancer Med., 8, 5988, 10.1002/cam4.2505

Weller, 2019, Health-related quality of life and neurocognitive functioning with lomustine-temozolomide versus temozolomide in patients with newly diagnosed, MGMT-methylated glioblastoma (CeTeG/NOA-09): A randomised, multicentre, open-label, phase 3 trial, Lancet Oncol., 20, 1444, 10.1016/S1470-2045(19)30502-9

Lapointe, S., Mason, W., MacNeil, M., Harlos, C., Tsang, R., Sederias, J., Luchman, H.A., Weiss, S., Rossiter, J.P., and Tu, D. (2019). A phase I study of vistusertib (dual mTORC1/2 inhibitor) in patients with previously treated glioblastoma multiforme: A CCTG study. Investig. New Drugs.

Allen, 2019, First-in-Human Phase I Clinical Trial of Pharmacologic Ascorbate Combined with Radiation and Temozolomide for Newly Diagnosed Glioblastoma, Clin. Cancer Res., 25, 6590, 10.1158/1078-0432.CCR-19-0594

Thomas, 2019, Macrophage Exclusion after Radiation Therapy (MERT): A First in Human Phase I/II Trial using a CXCR4 Inhibitor in Glioblastoma, Clin. Cancer Res., 25, 6948, 10.1158/1078-0432.CCR-19-1421

Van den Bent, M., Eoli, M., Sepulveda, J.M., Smits, M., Walenkamp, A., Frenel, J.S., Franceschi, E., Clement, P.M., Chinot, O., and de Vos, F. (2019). INTELLANCE 2/EORTC 1410 randomized phase II study of Depatux-M alone and with temozolomide vs temozolomide or lomustine in recurrent EGFRamplified glioblastoma. Neuro Oncol.

Cloughesy, T.F., Brenner, A., de Groot, J.F., Butowski, N.A., Zach, L., Campian, J.L., Ellingson, B.M., Freedman, L.S., Cohen, Y.C., and Lowenton-Spier, N. (2019). A randomized controlled phase III study of VB-111 combined with bevacizumab vs. bevacizumab monotherapy in patients with recurrent glioblastoma (GLOBE). Neuro Oncol.

Kamath, 2019, Glioblastoma Treated With Magnetic Resonance Imaging-Guided Laser Interstitial Thermal Therapy: Safety, Efficacy, and Outcomes, Neurosurgery, 84, 836, 10.1093/neuros/nyy375

Mahmoudi, 2018, Magnetic hyperthermia therapy for the treatment of glioblastoma: A review of the therapy’s history, efficacy and application in humans, Int. J. Hyperth., 34, 1316, 10.1080/02656736.2018.1430867

Leuthardt, E.C., Duan, C., Kim, M.J., Campian, J.L., Kim, A.H., Miller-Thomas, M.M., Shimony, J.S., and Tran, D.D. (2016). Hyperthermic Laser Ablation of Recurrent Glioblastoma Leads to Temporary Disruption of the Peritumoral Blood Brain Barrier. PLoS ONE, 11.

Patel, 2016, Intracranial MR-guided laser-induced thermal therapy: Single-center experience with the Visualase thermal therapy system, J. Neurosurg., 125, 853, 10.3171/2015.7.JNS15244

Thomas, 2016, Laser interstitial thermal therapy for newly diagnosed and recurrent glioblastoma, Neurosurg. Focus, 41, E12, 10.3171/2016.7.FOCUS16234

Mohammadi, 2014, The role of laser interstitial thermal therapy in enhancing progression-free survival of difficult-to-access high-grade gliomas: A multicenter study, Cancer Med., 3, 971, 10.1002/cam4.266

Davies, 2013, Tumor treating fields: A new frontier in cancer therapy, Ann. N. Y. Acad. Sci., 1291, 86, 10.1111/nyas.12112

Rick, 2018, Tumor treating fields: A new approach to glioblastoma therapy, J. Neurooncol., 137, 447, 10.1007/s11060-018-2768-x

Optune® Elevate Expectations (2020, March 10). INSTRUCTIONS FOR USE. Available online: https://www.optune.com/Content/pdfs/Optune_IFU_8.5x11.pdf.

Stupp, 2017, Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: A Randomized Clinical Trial, JAMA, 318, 2306, 10.1001/jama.2017.18718

Taphoorn, 2018, Influence of Treatment With Tumor-Treating Fields on Health-Related Quality of Life of Patients With Newly Diagnosed Glioblastoma: A Secondary Analysis of a Randomized Clinical Trial, JAMA Oncol., 4, 495, 10.1001/jamaoncol.2017.5082

Desjardins, 2016, Vaccine Therapy, Oncolytic Viruses, and Gliomas, Oncology (Williston Park), 30, 211

Tivnan, 2017, Advances in immunotherapy for the treatment of glioblastoma, J. Neurooncol., 131, 1, 10.1007/s11060-016-2299-2

Lim, 2018, Current state of immunotherapy for glioblastoma, Nat. Rev. Clin. Oncol., 15, 422, 10.1038/s41571-018-0003-5

Huang, 2017, Immune Checkpoint in Glioblastoma: Promising and Challenging, Front. Pharmacol., 8, 242, 10.3389/fphar.2017.00242

Bagley, 2018, CAR T-cell therapy for glioblastoma: Recent clinical advances and future challenges, Neuro Oncol., 20, 1429, 10.1093/neuonc/noy032

Martikainen, M., and Essand, M. (2019). Virus-Based Immunotherapy of Glioblastoma. Cancers (Basel), 11.

Srivastava, S., Jackson, C., Kim, T., Choi, J., and Lim, M. (2019). A Characterization of Dendritic Cells and Their Role in Immunotherapy in Glioblastoma: From Preclinical Studies to Clinical Trials. Cancers (Basel), 11.

Sayegh, 2014, Vaccine therapies for patients with glioblastoma, J. Neurooncol., 119, 531, 10.1007/s11060-014-1502-6

McGranahan, 2019, Current State of Immunotherapy for Treatment of Glioblastoma, Curr. Treat. Options Oncol., 20, 24, 10.1007/s11864-019-0619-4