Giant magnetic refrigeration capacity near room temperature in Ni40Co10Mn40Sn10 multifunctional alloy

Applied Physics Letters - Tập 104 Số 13 - 2014
Linan Huang1,2, Daoyong Cong2, Hongli Suo3, Yandong Wang2
1School of Materials Science and Engineering, Beijing Institute of Technology 2 , Beijing 100081, People's Republic of China
2State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing 1 , No. 30 Xueyuan Rd, Haidian District, Beijing 100083, People's Republic of China
3College of Materials Science and Engineering, Beijing University of Technology 3 , Beijing 100124, People's Republic of China

Tóm tắt

We report a giant effective magnetic refrigeration capacity in a Ni40Co10Mn40Sn10 multifunctional alloy. With a large magnetization difference between austenite and martensite, this alloy shows a strong magnetic field dependence of transformation temperatures. Complete magnetic-field-induced structural transformation and a considerable magnetic entropy change are observed in a broad operating temperature window of 33 K near room temperature. Consequently, an effective magnetic refrigeration capacity of 251 J/kg for 5 T is achieved, which is the largest value for Ni-Mn-based Heusler alloys and comparable to that of the high-performance Gd-Si-Ge and La-Fe-Si magnetocaloric materials. Incorporating the advantages of low cost and non-toxicity, this alloy shows very promising prospects for room-temperature magnetic refrigeration.

Từ khóa


Tài liệu tham khảo

1997, Phys. Rev. Lett., 78, 4494, 10.1103/PhysRevLett.78.4494

2005, Nature Mater., 4, 450, 10.1038/nmat1395

2001, Appl. Phys. Lett., 78, 3675, 10.1063/1.1375836

2002, Nature (London), 415, 150, 10.1038/415150a

2004, Nature (London), 429, 853, 10.1038/nature02657

2008, J. Phys. D: Appl. Phys., 41, 192004, 10.1088/0022-3727/41/19/192004

2010, Appl. Phys. Lett., 97, 062505, 10.1063/1.3467460

2012, Nature Mater., 11, 620, 10.1038/nmat3334

2009, Adv. Funct. Mater., 19, 983, 10.1002/adfm.200801322

2006, Appl. Phys. Lett., 88, 192513, 10.1063/1.2203211

2006, Nature (London), 439, 957, 10.1038/nature04493

2009, Phys. Rev. B, 80, 104404, 10.1103/PhysRevB.80.104404

2007, Appl. Phys. Lett., 91, 012510, 10.1063/1.2753710

2013, Appl. Phys. Lett., 102, 232406, 10.1063/1.4811164

2012, Acta Mater., 60, 5335, 10.1016/j.actamat.2012.06.034

2010, Appl. Phys. Lett., 97, 014101, 10.1063/1.3456562

2012, Phys. Rev. B, 85, 134450, 10.1103/PhysRevB.85.134450

2010, Appl. Phys. Lett., 97, 021908, 10.1063/1.3454239

2013, J. Phys. D: Appl. Phys., 46, 435001, 10.1088/0022-3727/46/43/435001

2014, J. Alloys Compd., 584, 175, 10.1016/j.jallcom.2013.09.007

2008, Appl. Phys. Lett., 92, 021908, 10.1063/1.2833699

2009, Scr. Mater., 60, 25, 10.1016/j.scriptamat.2008.08.022

2013, JOM, 65, 1540, 10.1007/s11837-013-0757-2

2010, Appl. Phys. Lett., 97, 242512, 10.1063/1.3525168

2012, Nat. Commun., 3, 873, 10.1038/ncomms1868

2008, Appl. Phys. Lett., 93, 102512, 10.1063/1.2981210

1999, Phys. Rev. Lett., 83, 2262, 10.1103/PhysRevLett.83.2262

2010, Appl. Phys. Lett., 96, 132501, 10.1063/1.3372633

2007, Appl. Phys. Lett., 90, 032507, 10.1063/1.2425033

2009, Appl. Phys. Lett., 95, 072509, 10.1063/1.3194144

2012, Appl. Phys. Lett., 101, 012401, 10.1063/1.4732525

2008, Appl. Phys. Lett., 92, 022503, 10.1063/1.2831919

2012, Appl. Phys. Lett., 101, 212403, 10.1063/1.4767453

2014, Appl. Phys. Lett., 104, 044101, 10.1063/1.4863273

2007, J. Phys. D: Appl. Phys., 40, 1869, 10.1088/0022-3727/40/7/005

2012, J. Alloys Compd., 520, 277, 10.1016/j.jallcom.2012.01.042

2008, J. Phys. D: Appl. Phys., 41, 245005, 10.1088/0022-3727/41/24/245005

2006, Appl. Phys. Lett., 88, 192511, 10.1063/1.2202751

2007, Phys. Rev. B, 76, 132403, 10.1103/PhysRevB.76.132403

2011, J. Alloys Compd., 509, 3452, 10.1016/j.jallcom.2010.12.088

2012, J. Phys. D: Appl. Phys., 45, 255001, 10.1088/0022-3727/45/25/255001

2013, J. Alloys Compd., 577, 486, 10.1016/j.jallcom.2013.05.205

2010, J. Alloys Compd., 503, 273, 10.1016/j.jallcom.2010.05.026

2007, Appl. Phys. Lett., 91, 242503, 10.1063/1.2823601

2007, J. Appl. Phys., 102, 033903, 10.1063/1.2761853

2013, J. Appl. Phys., 113, 17A913, 10.1063/1.4794881

2011, Acta Mater., 59, 412, 10.1016/j.actamat.2010.09.059

2012, Phys. Rev. B, 85, 024414, 10.1103/PhysRevB.85.024414

2014, Scr. Mater., 75, 26, 10.1016/j.scriptamat.2013.11.009

2011, J. Phys. D: Appl. Phys., 44, 145002, 10.1088/0022-3727/44/14/145002