Geostatistical radar-raingauge combination with nonparametric correlograms: methodological considerations and application in Switzerland

Hydrology and Earth System Sciences - Tập 15 Số 5 - Trang 1515-1536
R. Schiemann1, Rebekka Erdin1, Marco Willi1, Christoph Frei1, Marc Berenguer2, Daniel Sempere‐Torres2
1Federal Office of Meteorology and Climatology MeteoSwiss, Kraehbuehlstrasse 58, P.O. Box 514, 8044 Zurich, Switzerland
2Centre de Recerca Aplicada en Hidrometeorologia (CRAHI), Universitat Politècnica de Catalunya, C/ Gran Capità, 2-4, Edifici NEXUS 102-106, 08034 Barcelona, Spain

Tóm tắt

Abstract. Modelling spatial covariance is an essential part of all geostatistical methods. Traditionally, parametric semivariogram models are fit from available data. More recently, it has been suggested to use nonparametric correlograms obtained from spatially complete data fields. Here, both estimation techniques are compared. Nonparametric correlograms are shown to have a substantial negative bias. Nonetheless, when combined with the sample variance of the spatial field under consideration, they yield an estimate of the semivariogram that is unbiased for small lag distances. This justifies the use of this estimation technique in geostatistical applications. Various formulations of geostatistical combination (Kriging) methods are used here for the construction of hourly precipitation grids for Switzerland based on data from a sparse realtime network of raingauges and from a spatially complete radar composite. Two variants of Ordinary Kriging (OK) are used to interpolate the sparse gauge observations. In both OK variants, the radar data are only used to determine the semivariogram model. One variant relies on a traditional parametric semivariogram estimate, whereas the other variant uses the nonparametric correlogram. The variants are tested for three cases and the impact of the semivariogram model on the Kriging prediction is illustrated. For the three test cases, the method using nonparametric correlograms performs equally well or better than the traditional method, and at the same time offers great practical advantages. Furthermore, two variants of Kriging with external drift (KED) are tested, both of which use the radar data to estimate nonparametric correlograms, and as the external drift variable. The first KED variant has been used previously for geostatistical radar-raingauge merging in Catalonia (Spain). The second variant is newly proposed here and is an extension of the first. Both variants are evaluated for the three test cases as well as an extended evaluation period. It is found that both methods yield merged fields of better quality than the original radar field or fields obtained by OK of gauge data. The newly suggested KED formulation is shown to be beneficial, in particular in mountainous regions where the quality of the Swiss radar composite is comparatively low. An analysis of the Kriging variances shows that none of the methods tested here provides a satisfactory uncertainty estimate. A suitable variable transformation is expected to improve this.

Từ khóa


Tài liệu tham khảo

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C.: A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Comput., 16, 1190–1208, 1995.

Cassiraga, E. F., Guardiola-Albert, C., and Gómez-Hernández, J. J.: geoENV IV – Geostatistics for Environmental Applications Proceedings of the Fourth European Conference on Geostatistics for Environmental Applications held in Barcelona, Spain, 27–29 November 2002, chap. Automatic Modeling of Cross-Covariances for Rainfal Estimation Using Raingage and Radar Data, 391–399, Springer Netherlands, https://doi.org/10.1007/1-4020-2115-1_33, 2004.

Cressie, N. A. C.: Statistics for spatial data, Wiley, revised Edn., 1993.

DeGaetano, A. T. and Wilks, D. S.: Radar-guided interpolation of climatological precipitation data, Int. J. Climatol., 29, 185–196, https://doi.org/10.1002/joc.1714, 2009.

Diggle, P. J. and Ribeiro Jr, P. J.: Model-based geostatistics, Springer, 2007.

Doviak, R. J. and Zrnc, D. S.: Doppler radar and weather observations, Academic Press, 2 Edn., 1993.

Erdin, R.: Combining rain gauge and radar measurements of a heavy precipitation event over Switzerland: Comparison of geostatistical methods and investigation of important influencing factors, Veröffentlichungen der MeteoSchweiz, 81, 108 pp., available at: http://www.meteoswiss.admin.ch/web/de/forschung/publikationen/alle_publikationen/veroeff_81.html, 2009.

Fabry, F., Bellon, A., Duncan, M. R., and Austin, G. L.: High resolution rainfall measurements by radar for very small basins: the sampling problem reexamined, J. Hydrol., 161, 415–428, https://doi.org/10.1016/0022-1694(94)90138-4, 1994.

Frei, C., Schöll, R., Fukutome, S., Schmidli, J., and Vidale, P. L.: Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models, J. Geophys. Res., 111, D06105, https://doi.org/10.1029/2005JD005965, 2006.

Germann, U., Galli, G., Boscacci, M., and Bolliger, M.: Radar precipitation measurement in a mountainous region, Quart. J. Roy. Meteor. Soc., 132, 1669–1692, https://doi.org/10.1256/qj.05.190, 2006.

Gjertsen, U., Šalek, M., and Michelson, D. B.: Proceedings of the Third European Conference on Radar Meteorology (ERAD) together with the COST 717 Final Seminar. Visby, Island of Gotland, Sweden, 6–10 September 2004., available at: www.copernicus.org/erad/2004/online/ERAD04_P_7.pdf, 7–11, 2004.

Goudenhoofdt, E. and Delobbe, L.: Evaluation of radar-gauge merging methods for quantitative precipitation estimates, Hydrol. Earth Syst. Sci., 13, 195–203, https://doi.org/10.5194/hess-13-195-2009, 2009.

Haberlandt, U.: Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event, J. Hydrol., 332, 144–157, https://doi.org/10.1016/j.jhydrol.2006.06.028, 2007.

MeteoSwiss: Starkniederschlagsereignis August 2005, Tech. Rep. 211, MeteoSwiss (Arbeitsberichte der MeteoSchweiz), 2006 (in German).

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.: Numerical Recipies in C. The Art of Scientific Computing, Cambridge University Press, 2 Edn., 1992.

Ribeiro Jr, P. J. and Diggle, P. J.: geoR: a package for geostatistical analysis, R-NEWS, 1, 14–18, 2001.

Schabenberger, O. and Gotway, C.: Statistical methods for spatial data analysis, Taylor & Francis, 2005.

Seo, D. J.: Real-time estimation of rainfall fields using radar rainfall and rain gage data, J. Hydrol., 208, 37–52, 1998.

Seo, D. J., Krajewski, W. F., and Bowles, D. S.: Stochastic Interpolation of Rainfall Data From Rain Gages and Radar Using Cokriging 1. Design of Experiments, Water Resour. Res., 26, 469–477, 1990.

Sevruk, B.: Der Niederschlag in der Schweiz, Vol. 31 of \\em {Beitr. Geol. Schweiz Hydrol.}\\/, chap. Systematischer Niederschlagsmessfehler in der Schweiz, 65–75, 1985 (in German).

Sinclair, S. and Pegram, G.: Combining radar and rain gauge rainfall estimates using conditional merging, Atmos. Sci. Lett., 6, 19–22, https://doi.org/10.1002/asl.85, 2005.

Todini, E.: A Bayesian technique for conditioning radar precipitation estimates to rain-gauge measurements, Hydrol. Earth Syst. Sci., 5, 187–199, https://doi.org/10.5194/hess-5-187-2001, 2001.

Velasco-Forero, C. A., Sempere-Torres, D., Cassiraga, E. F., and Gómez-Hernández, J. J.: A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data, Adv. Water Resour., 32, 986–1002, https://doi.org/10.1016/j.advwatres.2008.10.004, 2009.

Wackernagel, H.: Multivariate geostatistics: an introduction with applications, Springer, 3 Edn., 2003.

Wood, A. T. A. and Chan, G.: Simulation of stationary Gaussian processes in [0,1]d, J. Comput. Graph. Stat., 3, 409–432, \\urlprefixhttp://www.jstor.org/stable/1390903, 1994.

Wüest, M., Frei, C., Altenhoff, A., Hagen, M., Litschi, M., and Schär, C.: A gridded hourly precipitation dataset for Switzerland using rain-gauge analysis and radar-based disaggregation, Int. J. Climatol., 30, 1764–1775, https://doi.org/10.1002/joc.2025, 2010.

Yao, T. and Journel, A. G.: Automatic Modeling of (Cross) Covariance Tables Using Fast Fourier Transform, Math. Geology, 30, 589–615, 1998.

Zawadzki, I. I.: On Radar-Raingauge Comparison, J. Appl. Meteor., 14, 1430–1436, 1975.