Geometric least squares means ratios for the analysis of Plasmodium falciparum in vitro susceptibility to antimalarial drugs
Tóm tắt
The susceptibility of microbes such as Plasmodium falciparum to drugs is measured in vitro as the concentration of the drug achieving 50% of maximum effect (IC50); values from a population are summarized as geometric means. For antimalarial drugs, as well as for antibiotics, assessing changes in microbe susceptibility over time under drug pressure would help inform treatment policy decisions, but no standard statistical method exists as yet. A mixed model was generated on loge-transformed IC50 values and calculated geometric least squares means (GLSM) with 90% confidence intervals (CIs). In order to compare IC50s between years, GLSM ratios (GLSMR) with 90%CIs were calculated and, when both limits of the 90%CIs were below or above 100%, the difference was considered statistically significant. Results were compared to those obtained from ANOVA and a generalized linear model (GLM). GLSMRs were more conservative than ANOVA and resulted in lower levels of statistical significance. The GLSMRs approach allowed for random effect and adjustment for multiple comparisons. GLM was limited in the number of year-to-year comparisons by the need for a single reference year. The three analyses yielded generally consistent results. A robust analytical method can palliate inherent limitations of in vitro sensitivity testing. The random effects GLSMRs with adjustment for multiple comparisons and 90%CIs require only assumptions on the mixed model to be applied. Results are easy to display graphically and to interpret. The GLMSRs should be considered as an option for monitoring changes in drug susceptibility of P. falciparum malaria and other microbes.
Tài liệu tham khảo
Susceptibility of Plasmodium falciparum to antimalarial drugs. Report on global monitoring 1996–2004. 2005, Geneva: World Health Organization
Turnidge J, Kahlmeter G, Kronvall G: Statistical characterisation of bacterial wild-type MIC value distributions and the determination of epidemiological cut-off values. Clin Microbiol Infect. 2006, 12 (5): 418-425. 10.1111/j.1469-0691.2006.01377.x.
EUCAST Definitive Document E.DEF 2.1, August 2000 : Determination of antimicrobial susceptibility test breakpoints. Clin Microbiol Infect. 2000, 6 (10): 570-572. 10.1046/j.1469-0691.2000.00178.x.
Pradines B, Tall A, Parzy D, Spiegel A, Fusai T, Hienne R, Trape JF, Doury JC: In-vitro activity of pyronaridine and amodiaquine against African isolates (Senegal) of Plasmodium falciparum in comparison with standard antimalarial agents. J Antimicrob Chemother. 1998, 42 (3): 333-339. 10.1093/jac/42.3.333.
Wongsrichanalai C, Wimonwattrawatee T, Sookto P, Laoboonchai A, Heppner DG, Kyle DE, Wernsdorfer WH: In vitro sensitivity of Plasmodium falciparum to artesunate in Thailand. Bull World Health Organ. 1999, 77 (5): 392-398.
Brockman A, Price RN, van Vugt M, Heppner DG, Walsh D, Sookto P, Wimonwattrawatee T, Looareesuwan S, White NJ, Nosten F: Plasmodium falciparum antimalarial drug susceptibility on the north-western border of Thailand during five years of extensive use of artesunate-mefloquine. Trans R Soc Trop Med Hyg. 2000, 94 (5): 537-544. 10.1016/S0035-9203(00)90080-4.
Navaratnam V, Mansor SM, Mordi MN, Akbar A, Abdullah MN: Comparative pharmacokinetic study of oral and rectal formulations of artesunic acid in healthy volunteers. Eur J Clin Pharmacol. 1998, 54 (5): 411-414. 10.1007/s002280050484.
Newton PN, van Vugt M, Teja-Isavadharm P, Siriyanonda D, Rasameesoroj M, Teerapong P, Ruangveerayuth R, Slight T, Nosten F, Suputtamongkol Y, Looareesuwan S, White NJ: Comparison of oral artesunate and dihydroartemisinin antimalarial bioavailabilities in acute falciparum malaria. Antimicrob Agents Chemother. 2002, 46 (4): 1125-1127. 10.1128/AAC.46.4.1125-1127.2002.
Olliaro PL, Nair NK, Sathasivam K, Mansor SM, Navaratnam V: Pharmacokinetics of artesunate after single oral administration to rats. BMC Pharmacol. 2001, 1: 12-10.1186/1471-2210-1-12.
Guidance for Industry: Statistical Approaches to Establishing Bioequivalence. 2001, U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER)
Rani S, Pargal A: Bioequivalence: An Overview of Statistical Concepts. Indian J Pharmacol. 2004, 4: 209-216.
Brown H, Prescott R: Applied mixed models in Medicine – 2nd edition. 2006, Chichester: John Wiley & Sons Ltd
Antimalarial drug combination therapy. 2001, WHO
Agnamey P, Brasseur P, de Pecoulas PE, Vaillant M, Olliaro P: Plasmodium falciparum in vitro susceptibility to antimalarial drugs in Casamance (southwestern Senegal) during the first 5 years of routine use of artesunate-amodiaquine. Antimicrob Agents Chemother. 2006, 50 (4): 1531-1534. 10.1128/AAC.50.4.1531-1534.2006.
Verbeke G, Molenberghs G: Linear mixed models for longitudinal data. 2000, New York: Springer
SAS Institute Inc: The GENMOD Procedure. SAS/STAT® 91 User's guide. 2004, Cary, N.C.: SAS Institute Inc, 31: 1621-1742.
Brasseur P, Druilhe P, Kouamouo J, Brandicourt O, Danis M, SR M: High level of sensitivity to choloroquine of 72 Plasmodium falciparum isolates from southern Cameroon in January 1985. Am J Trop Med Hyg. 1986, 35: 711-716.
Agnamey P, Brasseur P, Cissé M, Gaye O, Dumoulin J, Rigal J, Taylor WRJ, Olliaro P: Economic evaluation of a policy change from single-agent treatment for suspected malaria to artesunate-amodiaquine for microscopically confirmed uncomplicated falciparum malaria in the Oussouye district of southwestern Senegal. Trop Med Int Health. 2005
Desjardins RE, Canfield CJ, Haynes JD, Chulay JD: Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979, 16: 710-718.
SAS Institute Inc: The MIXED Procedure. SAS/STAT® 91 User's guide. 2004, Cary, N.C.: SAS Institute Inc, 31: 2671-2863.
Kaddouri H, Nakache S, Houze S, Mentre F, Le Bras J: Assessment of the drug susceptibility of Plasmodium falciparum clinical isolates from africa by using a Plasmodium lactate dehydrogenase immunodetection assay and an inhibitory maximum effect model for precise measurement of the 50-percent inhibitory concentration. Chemother. 2006, 50 (10): 3343-3349.
Stepniewska K, Chotivanich K, Brockman A, Day NP, White NJ: Overestimating resistance in field testing of malaria parasites: simple methods for estimating high EC50 values using a Bayesian approach. Malar J. 2007, 6: 4-10.1186/1475-2875-6-4.
Box GEP, Cox DR: An Analysis of Transformations. Journal of the Royal Statistical Society Series B (Methodological). 1964, 26 (2): 211-252.