Các Tính Chất Hình Học của Các Không Gian Đối Xứng với Ứng Dụng vào Các Không Gian Orlicz–Lorentz

Positivity - 1998
Joan Cerdà1, Henryk Hudzik2, Anna Kamińska3, MieczysŁaw MastyŁo2
1Departament de Matemática Aplicada i Análisi, Universitat de Barcelona, Barcelona, Spain E-mail: Email
2Faculty of Mathematics and Computer Sciences, Adam Mickiewicz University, Poznań, Poland E–mail: Email
3Department of Mathematical Sciences, The University of Memphis, Memphis, U.S.A. E–mail: Email

Tóm tắt

Chúng tôi nghiên cứu các tính chất lõm cơ bản – tính tròn, và tính tròn đồng nhất, đồng nhất cục bộ và đầy đủ – cho các không gian đối xứng. Một cách đặc trưng các không gian Orlicz–Lorentz với tính chất Kadec–Klee cho sự hội tụ tại chỗ được trình bày. Những kết quả này được áp dụng để thu được các tiêu chí về hội tụ cho các không gian chuỗi Orlicz–Lorentz, và một số chứng minh mới cho phần đủ của tiêu chí cho tính tròn và tính tròn đồng nhất cho các không gian hàm Orlicz–Lorentz.

Từ khóa

#Không gian đối xứng #Tính tròn #Tính đồng nhất #Không gian Orlicz–Lorentz #Tính chất Kadec–Klee

Tài liệu tham khảo

C. Bennett and B. Sharpley, Interpolation of Operators, Academic Press Inc., New York 1988.

G. Birkhoff, Lattice Theorey, Providence, RI 1967.

A. P. Calderón, Intermediate spaces and interplation, the complex method, Studia Math. 24 (1964), 113–190.

J. Cerdà, H. Hudzik and M. Mastyło, On the geometry of some Calderón–Lozanovski \(\imath \vee\). spaces, Indag. Math. NS 6,1(1995), 35–49.

S. T. Chen, Geometry of Orlicz Spaces, Dissert. Math. 356 (1996).

V. I. Chillin, P. G. Dodds, A. A. Sedaev and F. A. Sukochev, Characterizations of Kadec–Klee properties in symmetric spaces of measurable functions, Trans. Amer. Math. Soc. 348,12 (1996), 4895–4918.

W. J. Davis, N. Ghaussoub and J. Lindenstrauss. A lattice renorming theorem and applications to vector-valued problems, Trans. Amer. Math. Soc. 263,2 (1981), 531–540.

S. J. Dilworth and Y. P. Hsu. The uniform Kadec–Klee property for Lorentz spaces L w,1, J. Austral. Math. Soc. Ser. A, 60,2 (1996), 7–17.

H. Hudzik, Musielak–Orlicz spaces isomorphic to strictly convex spaces, Bull. Acad. Polon. Sci. Sér. Math. 29 (1981), 465–470.

H. Hudzik, A. Kamińska and M. Mastyło, Geometric properties of some Calderón–Lozanovski \(\imath \vee\) and Orlicz–Lorentz spaces, Houston J. Math., 22 (1996), 639–663.

H. Hudzik, A. Kamińska and M. Mastyło, On geometric properties of Orlicz–Lorentz spaces, Canad. Math. Bull., to appear.

H. Hudzik, A. Kamińska and M. Mastyło, Some properties of Banach lattices, preprint.

H. Hudzik and M. Mastyło, Strongly extreme points in Köthe–Bochner spaces, Rocky Mtn. J. Math. 23,3 (1993), 899–909.

R. Huff, Banach spaces which are nearly convex, Rocky Mtn. J. Math. 10,3 (1980), 473–479.

A. Kamińska, On uniform convexity of Orlicz spaces, Indag. Math. 44,1 (1982) 27–36.

A. Kamińska, Some remarks on Orlicz–Lorentz spaces, Math. Nachr. 147 (1990), 29–38.

A. Kamińska, Uniform convexity of generalized Lorentz spaces, Arch. Math. 56 (1991), 181–188.

S. G. Krein, P. K. Lin and H. Sun, Uniform normal structure of Orlicz–Lorentz spaces, Interaction Between Functional Analysis, Harmonic Analysis and Probability, Marcel Dekker 1996, 229–238.

A. Krein, Yu Petunin and E. M. Semenov, Interpolation of Linear Operators, Moscow 1978 (in Russian) and Amer. Math. Soc. 1982.

P. K. Lin, K–uniform rotundity of Lorentz–Orlicz spaces, J. Math. Anal. Appli. 204 (1996), 29–45.

P. K. Lin and H. Sun, Some geometric properties in Lorentz–Orlicz spaces, Arch. Math. 64 (1995), 500–511.

J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II, Springer–Verlag, Berlin–Heidelberg–New York 1979.

G. Ya Lozanovski\({\imath} \vee\), On some Banach lattices IV, Siberian. Math. J. 14 (1973), 97–108 (English translation).

G. Ya Lozanovski\({\imath} \vee\), Transformations of ideal Banach spaces by means of concave functions, Qualitative and Approximate Methods for Investigation of Operator Equations, Yaroslav 1978, 122–148 (in Russian).

A. Medzitov and P. Sukochev, The property. H/ in Orlicz spaces, Bull. Acad. Polon. Sci. Sér. Math. 40,3–4 (1981), 137–144.

S. J. Montgomery–Smith, Comparison of Orlicz–Lorentz spaces, Studia Math. 103 (1992), 161–189.

J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer-Verlag 1983.

Y. Raynaud, On Lorentz–Sharpley Spaces and Related Topics, Interpolation Spaces and Related Topics, Israel Math. Conf. Proc. 5 (1992), 207–228.

S. Reisner, On two theorems of Lozanovski \(\imath \vee\) concerning intermediate Banach lattices, Lecture Notes in Math. 1317, Springer–Verlag (1988), 67–83.

P. Sukochev, On the uniform Kadec–Klee property with respect to convergence in measure, J. Austral. Math. Soc. 59 (1995), 343–352.

B. Turett, Rotundity in Orlicz spaces, Indag. Math. A79 (1976), 462–468.