Giám sát di truyền về tính năng siêu độc và đa kháng thuốc trong Klebsiella pneumoniae xâm lấn từ Nam và Đông Nam Á

Kelly L. Wyres1, To Nguyen Thi Nguyen2, Margaret Lam1, Louise M. Judd1, Nguyễn Văn Vĩnh Châu3, David A. B. Dance4, Margaret Ip5, Abhilasha Karkey6, Clare Ling6, Thyl Miliya7, Paul N. Newton4, Nguyen Phu Huong Lan3, Amphone Sengduangphachanh4, Paul Turner6, Balaji Veeraraghavan8, Phat Voong Vinh2, Manivanh Vongsouvath4, Nicholas R. Thomson9, Stephen Baker10, Kathryn E. Holt9
1Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
2Hospital of Tropical Diseases, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
3the Hospital of Tropical Diseases, Ho Chi Minh City, Vietnam
4Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
5Department of Microbiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
6Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
7Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
8Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
9London School of Hygiene and Tropical Medicine, London, UK
10Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID) Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK

Tóm tắt

Tóm tắt Thông tin nền Klebsiella pneumoniae là nguyên nhân hàng đầu gây nhiễm trùng huyết (BSI). Các chủng sản sinh beta-lactamase phổ rộng (ESBLs) hoặc carbapenemase được coi là mầm bệnh ưu tiên toàn cầu, mà cần phải có những chiến lược điều trị và phòng ngừa mới một cách khẩn thiết, do các lựa chọn điều trị nghiêm trọng bị hạn chế. Nam và Đông Nam Á là những trung tâm chính cho K. pneumoniae kháng kháng sinh (AMR) và cũng cho những chủng “siêu độc” có tính nhạy cảm với kháng sinh, được lấy từ cộng đồng. Sự xuất hiện của các chủng AMR siêu độc và thiếu dữ liệu về sự đa dạng của exopolysaccharide đặt ra thách thức cho các chiến lược kiểm soát BSI do K. pneumoniae gây ra trên toàn cầu. Phương pháp Chúng tôi đã tiến hành một nghiên cứu dịch tễ học di truyền hồi cứu trên 365 mẫu BSI K. pneumoniae từ bảy cơ sở chăm sóc sức khỏe lớn ở Nam và Đông Nam Á, trích xuất thông tin lâm sàng liên quan (AMR, độ độc, loci kháng nguyên K và O) bằng cách sử dụng Kleborate, một công cụ phân loại di truyền đặc thù cho K. pneumoniae. Kết quả Các mẫu BSI K. pneumoniae rất đa dạng, bao gồm 120 loại chuỗi đa vị trí (STs) và 63 loci K. Tần suất gen ESBL và carbapenemase lần lượt là 47% và 17%. Locus tổng hợp aerobactin (iuc), liên quan đến siêu độc, được phát hiện trong 28% các mẫu. Quan trọng, 7% các mẫu có gen iuc cùng với gen ESBL và/hoặc carbapenemase. Điều này đại diện cho sự hội tụ về kiểu gen AMR-độc tính, mà thường được coi là một hiện tượng hiếm nhưng lại đặc biệt phổ biến trong BSI ở Nam Á (17%). Khả năng đáng lo ngại nhất, chúng tôi đã xác định bảy plasmid mới mang cả gen iuc và gen AMR, làm dấy lên khả năng chuyển giao đồng thời các kiểu hình này giữa các K. pneumoniae. Kết luận K. pneumoniae BSI ở Nam và Đông Nam Á do các ST khác với những ST chiếm ưu thế ở các khu vực khác gây ra, và với tần suất cao hơn của các yếu tố độc tính thu nhận. K. pneumoniae mang cả gen iuc và gen AMR cũng được phát hiện với tỷ lệ cao hơn so với các báo cáo ở nơi khác. Nghiên cứu chứng minh rằng giám sát dựa trên genomics—báo cáo đầy đủ hồ sơ phân tử bao gồm STs, AMR, độ độc và thông tin loci huyết thanh—có thể giúp tiêu chuẩn hóa các so sánh giữa các địa điểm và xác định sự khác biệt khu vực trong quần thể mầm bệnh.

Từ khóa


Tài liệu tham khảo

World Health Organization. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and devlopment of new antibiotics. 2017.

Rodriguez-Baño J, Gutiérrez-Gutiérrez B, Machuca I, Pascual A. Treatment of infections caused by extended-spectrum-beta-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae. Clin Microbiol Rev. 2018;31:e00079–17.

Rello J, Kalwaje Eshwara V, Lagunes L, Alves J, Wunderink RG, Conway-Morris A, et al. A global priority list of the TOp TEn resistant microorganisms (TOTEM) study at intensive care: a prioritization exercise based on multi-criteria decision analysis. Eur J Clin Microbiol Infect Dis. 2018;38:319–23.

Dat VQ, Vu HN, Nguyen The H, Nguyen HT, Hoang LB, Vu Tien Viet D, et al. Bacterial bloodstream infections in a tertiary infectious diseases hospital in northern Vietnam: aetiology, drug resistance, and treatment outcome. BMC Infect Dis. 2017;17:493.

Fox-Lewis A, Takata J, Miliya T, Lubell Y, Soeng S, Sar P, et al. Antimicrobial resistance in invasive bacterial infections in hospitalized children, Cambodia, 2007–2016. Emerg Infect Dis. 2018;24:841–51.

Anderson M, Luangxay K, Sisouk K, Vorlasan L, Soumphonphakdy B, Sengmouang V, et al. Epidemiology of bacteremia in young hospitalized infants in Vientiane, Laos, 2000-2011. J Trop Pediatr. 2014;60:10–6.

The HC, Karkey A, Thanh DP, Boinett CJ, Cain AK, Ellington M, et al. A high-resolution genomic analysis of multidrug- resistant hospital outbreaks of Klebsiella pneumoniae. EMBO Molec Med. 2015;7:227–39.

Hsu LY, Tan TY, Jureen R, Koh TH, Krishnan P, Lin RTP, et al. Antimicrobial drug resistance in Singapore hospitals. Emerg Infect Dis. 2007;13:1944–7.

Hamzan NI, Yean CY, Rahman RA, Hasan H, Rahman ZA. Detection of blaIMP4 and blaNDM1 harboring Klebsiella pneumoniae isolates in a university hospital in Malaysia. Emerg Health Threats J. 2015;8:8–12.

Jajoo M, Manchanda V, Chaurasia S, Sankar MJ, Gautam H, Agarwal R, et al. Alarming rates of antimicrobial resistance and fungal sepsis in outborn neonates in North India. PLoS One. 2018;13:e0180705.

Mohanty S, Gajanand M, Gaind R. Identification of carbapenemase-mediated resistance among Enterobacteriaceae bloodstream isolates: a molecular study from India. Indian J Med Microbiol. 2017;35:421.

Smit P, Stoesser N, Pol S, van Kleef E, Oonsilvilai M, Tan P, et al. Transmission dynamics of hyper-endemic multi-drug resistant Klebsiella pneumoniae in a Southeast Asian neonatal unit: a longitudinal study with whole genome sequencing. Front Microbiol. 2018;9:1197.

Runcharoen C, Moradigaravand D, Blane B, Paksanont S, Thammachote J, Anun S, et al. Whole genome sequencing reveals high-resolution epidemiological links between clinical and environmental Klebsiella pneumoniae. Genome Med. 2017;9:6.

Castanheira M, Deshpande LM, Mathai D, Bell JM, Jones RN, Mendes RE. Early dissemination of NDM-1- and OXA-181-producing Enterobacteriaceae in Indian hospitals: report from the SENTRY antimicrobial surveillance program, 2006-2007. Antimicrob Agents Chemother. 2011;55:1274–8.

Tada T, Tsuchiya M, Shimada K, Nga TTT, Thu LTA, Phu TT, et al. Dissemination of carbapenem-resistant Klebsiella pneumoniae clinical isolates with various combinations of carbapenemases (KPC-2, NDM-1, NDM-4, and OXA-48) and 16S rRNA methylases (RmtB and RmtC) in Vietnam. BMC Infect Dis. 2017;17:467.

Laolerd W, Akeda Y, Preeyanon L, Ratthawongjirakul P, Santanirand P. Carbapenemase-producing carbapenem-resistant Enterobacteriaceae from Bangkok, Thailand, and their detection by the Carba NP and modified Carbapenem inactivation method tests. Microb Drug Resist. 2018;24:1006–11.

Shankar C, Veeraraghavan B, Nabarro LEB, Ravi R, Ragupathi NKD, Rupali P. Whole genome analysis of hypervirulent Klebsiella pneumoniae isolates from community and hospital acquired bloodstream infection. BMC Microbiol. 2018;18:6.

Magiorakos A, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–81.

Shankar C, Shankar BA, Manesh A, Veeraraghavan B. KPC-2 producing ST101 Klebsiella pneumoniae from bloodstream infection in India. J Med Microbiol. 2018;67(7):927-30. https://doi.org/10.1099/jmm.0.000767. Epub 2018 May 22.

Shankar C, Kumar S, Venkatesan M, Veeraraghavan B. Emergence of ST147 Klebsiella pneumoniae carrying blaNDM-7 on IncA/C2 with ompK35 and ompK36 mutations in India. J Infect Public Health. 2019;12:741–3.

Shankar C, Nabarro LEB, Ragupathi NKD, Sethuvel DPM, Daniel JLK, Doss CGP, et al. Draft genome sequences of three hypervirulent carbapenem-resistant Klebsiella pneumoniae isolates from bacteremia. Genome Announc. 2016;4:e01081–16.

Pragasam AK, Shankar C, Veeraraghavan B, Biswas I, Nabarro LEB, Inbanathan FY, et al. Molecular mechanisms of colistin resistance in Klebsiella pneumoniae causing bacteremia from India-a first report. Front Microbiol. 2017;7:2135.

Mukherjee S, Bhattacharjee A, Naha S, Majumdar T. Molecular characterization of NDM-1-producing Klebsiella pneumoniae ST29, ST347, ST1224, and ST2558 causing sepsis in neonates in a tertiary care hospital of north-East India. Infect Genet Evol. 2019;69:166–75.

Shankar C, Santhanam S, Kumar M, Gupta V, Devanga Ragupathi NK, Veeraraghavan B. Draft genome sequence of an extended-spectrum-β-lactamase-positive hypervirulent Klebsiella pneumoniae strain with novel sequence type 2318 isolated from a neonate. Genome Announc. 2016;4:e01273–16.

Luk S, Wong WK, Ho AY, Yu KC, WK T, Ng TK. Clinical features and molecular epidemiology of plasmid-mediated DHA-type AmpC beta-lactamase-producing Klebsiella pneumoniae blood culture isolates, Hong Kong. J Glob Antimicrob Resist. 2016;7:37–42.

Berglund B, NTB H, Tarnberg M, Le NK, Welander J, Nilsson M, et al. Colistin- and carbapenem-resistant Klebsiella pneumoniae carrying mcr-1 and blaOXA48 isolated at a paediatric hospital in Vietnam. J Antimicrob Chemother. 2018;73:1100–2.

Van Aartsen JJ, Moore CE, Parry CM, Turner P, Phot N, Mao S, et al. Epidemiology of paediatric gastrointestinal colonisation by extended spectrum cephalosporin-resistant Escherichia coli and Klebsiella pneumoniae isolates in north-west Cambodia. BMC Microbiol BMC Microbiol. 2019;19:1–14.

Wyres KL, Wick RR, Gorrie C, Jenney A, Follador R, Thomson NR, et al. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb Genomics. 2016;2

Hansen DS, Skov R, Benedí JV, Sperling V, Kolmos HJ. Klebsiella typing: pulsed-field gel electrophoresis (PFGE) in comparison with O:K-serotyping. Clin Microbiol Infect. 2002;8:397–404.

Martin RM, Bachman MA. Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Front Cell Infect Microbiol. 2018;8:4.

Cheng HY, Chen YS, Wu CY, Chang HY, Lai YC, Peng HL. RmpA regulation of capsular polysaccharide biosynthesis in Klebsiella pneumoniae CG43. J Bacteriol. 2010;192:3144–58.

Russo TA, Olson R, MacDonald U, Metzger D, Maltese LM, Drake EJ, et al. Aerobactin mediates virulence and accounts for increased siderophore production under iron-limiting conditions by hypervirulent (hypermucoviscous) Klebsiella pneumoniae. Infect Immun. 2014;82:2356–67.

Holden V, Breen P, Houle S, Dozois C, Bachman MA. Klebsiella pneumoniae siderophores induce inflammation, bacterial dissemination, and HIF-1α stabilization during pneumonia. mBio. 2016;7(5). https://doi.org/10.1128/mBio.01397-16.

Lu M-C, Chen Y-T, Chiang M-K, Wang Y-C, Hsiao P-Y, Huang Y-J, et al. Colibactin contributes to the hypervirulence of pks+ K1 CC23 Klebsiella pneumoniae in mouse meningitis infections. Front Cell Infect Microbiol. 2017;7:103.

Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA, Dance D, et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci U S A. 2015;112:E3574–81.

Lam MMC, Wick RR, Wyres KL, Gorrie C, Judd M, Brisse S, et al. Genetic diversity, mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in Klebsiella pneumoniae populations. Microb Genomics. 2018;4

Russo TA, Olson R, Fang C-T, Stoesser N, Miller M, MacDonald U, et al. Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae. J Clin Microbiol. 2018;56:e00776–18.

Siu LK, Yeh KM, Lin JC, Fung CP, Chang FY. Klebsiella pneumoniae liver abscess: a new invasive syndrome. Lancet Infect Dis. 2012;12:881–5.

Siu LK, Fung CP, Chang FY, Lee N, Yeh KM, Koh TH, et al. Molecular typing and virulence analysis of serotype K1 Klebsiella pneumoniae strains isolated from liver abscess patients and stool samples from noninfectious subjects in Hong Kong, Singapore, and Taiwan. J Clin Microbiol. 2011;49:3761–5.

Lin J-CC, Koh TH, Lee N, Fung C-PP, Chang F-YY, Tsai Y-KK, et al. Genotypes and virulence in serotype K2 Klebsiella pneumoniae from liver abscess and non-infectious carriers in Hong Kong, Singapore and Taiwan. Gut Pathog. 2014;6:21.

Wu KM, Li NH, Yan JJ, Tsao N, Liao TL, Tsai HC, et al. Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis. J Bacteriol. 2009;191:4492–501.

Chen YT, Chang HY, Lai YC, Pan CC, Tsai SF, Peng HL. Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene. 2004;337:189–98.

Russo TA, Olson R, MacDonald U, Beanan J, Davidsona BA. Aerobactin, but not yersiniabactin, salmochelin, or enterobactin, enables the growth/survival of hypervirulent (hypermucoviscous) Klebsiella pneumoniae ex vivo and in vivo. Infect Immun. 2015;83:3325–33.

Bulger J, MacDonald U, Olsen R, Beanan J, Russo TA. Metabolite transporter PEG344 is required for full virulence of hypervirulent Klebsiella pneumoniae strain hvKp1 after pulmonary but not subcutaneous challenge. Infect Immun. 2017;85:e00093–17.

Tu YC, Lu MC, Chiang MK, Huang SP, Peng HL, Chang HY, et al. Genetic requirements for Klebsiella pneumoniae-induced liver abscess in an oral infection model. Infect Immun. 2009;77:2657–71.

Russo TA, Marr CM. Hyperviulent Klebsiella pneumoniae. Clin Microbiol Rev. 2019;32:e00001–19.

Liu Y, Long D, Xiang T, Du F, Wei DD, Wan L. Whole genome assembly and functional portrait of hypervirulent extensively drug-resistant NDM-1 and KPC-2 co-producing Klebsiella pneumoniae of capsular serotype K2 and ST86. J Antimicrob Chemother. 2019;74:1233–40.

Surgers L, Boyd A, Girard PM, Arlet G, Decré D. ESBL-producing strain of hypervirulent Klebsiella pneumoniae K2. France Emerg Infect Dis. 2016;22:1687–8.

Turton JF, Payne Z, Coward A, Hopkins KL, Turton JA, Doumith M, et al. Virulence genes in isolates of Klebsiella pneumoniae from the UK during 2016, including among carbapenemase gene-positive hypervirulent K1-ST23 and ‘non-hypervirulent’ types ST147, ST15 and ST383. J Med Microbiol. 2017;67:118–28.

Karlsson M, Stanton R, Ansari U, McAllister G, Chan M, Sula E, et al. Identification of a carbapenemase-producing hypervirulent Klebsiella pneumoniae isolate in the United States. Antimicrob Agents Chemother 2019;63:e00519–19.

Harada S, Aoki K, Ishii Y, Ohno Y, Nakamura A, Komatsu M, et al. Emergence of IMP-producing hypervirulent Klebsiella pneumoniae carrying a pLVPK-like virulence plasmid. Int J Antimicrob Agents. 2019;53:873–5.

Gu D, Dong N, Zheng Z, Lin D, Huang M, Wang L, et al. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis. 2017;3099:1–10.

Heinz E, Ejaz H, Bartholdson Scott J, Wang N, Gujaran S, Pickard D, et al. Resistance mechanisms and population structure of highly drug resistant Klebsiella in Pakistan during the introduction of the carbapenemase NDM-1. Sci Rep. 2019;9:2392.

Shu L, Dong N, Lu J, Zheng Z, Hu J, Zeng W, et al. Emergence of OXA-232 carbapenemase-producing Klebsiella pneumoniae that carries a pLVPK-like virulence plasmid among elderly patients in China. Antimicrob Agents Chemother. 2019;63:e02246–18.

Caneiras C, Lito L, Melo-cristino J, Duarte A. Community- and hospital-acquired Klebsiella pneumoniae urinary tract infections in Portugal: virulence and antibiotic resistance. Microorganisms. 2019;7:138.

Huang Y, Chou S, Liang S, Ni C, Lin Y, Huang Y, et al. Emergence of an XDR and carbapenemase-producing hypervirulent Klebsiella pneumoniae strain in Taiwan. J Antimicrob Chemother. 2018;73:2039–46.

Du P, Zhang Y, Chen C. Emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Lancet Infect Dis. 2017;3099:30629.

Wick RR, Judd LM, Gorrie CL, Holt KE. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb Genomics. 2017;3

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.

Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comp Biol. 2017;13:e1005595.

Wick RR, Heinz E, Holt KE, Wyres KL. Kaptive web: user-friendly capsule and lipopolysaccharide serotype prediction for Klebsiella genomes. J Clin Microbiol. 2018;56:e00197–18.

Pan Y-J, Lin T-L, Chen C-T, Chen Y-Y, Hsieh P-F, Hsu C-R, et al. Genetic analysis of capsular polysaccharide synthesis gene clusters in 79 capsular types of Klebsiella spp. Nat Sci Rep. 2015;5:15573.

Follador R, Heinz E, Wyres KL, Ellington MJ, Kowarik M, Holt KE, et al. The diversity of Klebsiella pneumoniae surface polysaccharides. Microb Genomics. 2016;2

Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics. 2015;31:3350–2.

Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.

Brisse S, Passet V, Haugaard AB, Babosan A, Kassis-Chikhani N, Struve C, et al. wzi gene sequencing, a rapid method for determination of capsular type for Klebsiella strains. J Clin Microbiol. 2013;51:4073–8. [cited 2014 Mar 11]

Gorrie CL, Wick RR, Edwards DJ, Strugnell RA, Pratt N, Garlick J, et al. Gastrointestinal carriage is a major reservoir of K. pneumoniae infection in intensive care patients. Clin Infect Dis. 2017;65:208–15.

Souvorov A, Agarwala R, Lipman DJ. SKESA: strategic K-mer extension for scrupulous assemblies. Genome Biol. 2018;19:153.

Sherry NL, Lane CR, Kwong JC, Schultz M, Sait M, Stevens K, et al. Genomics for molecular epidemiology and detecting transmission of carbapenemase-producing Enterobacterales in Victoria, Australia, 2012-2016. J Clin Microbiol. 2019;57:1–12.

David S, Reuter S, Harris SR, Glasner C, Feltwell T, Argimon S, et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol. 2019;4(11):1919-29. https://doi.org/10.1038/s41564-019-0492-8. Epub 2019 Jul 29.

Carattoli A, Zankari E, Garciá-Fernández A, Larsen MV, Lund O, Villa L, et al. PlasmidFinder and pMLST: in silico detection and typing of plasmids. Antimicrob Agents Chemother. 2014;58:3895–903.

Wyres KL, Nguyen TNT, Lam MMC, Judd LM, Chau N, van V, DAB D, et al. Data for, “Genomic surveillance for hypervirulence and multi-drug resistance in invasive Klebsiella pneumoniae from south and southeast Asia”. Figshare Collection. 2019; https://doi.org/10.26180/5c67982956721.

R Development Core Team R. R: A Language and Environment for Statistical Computing. R Found Stat Comput. 2011. https://www.r-project.org.

Wickham H. ggplot2: Elegant Graphics for Data Analysis: Springer; 2009.

Lin T-L, Lee C-Z, Hsieh P-F, Tsai S-F, Wang J-T. Characterization of integrative and conjugative element ICEKp1-associated genomic heterogeneity in a Klebsiella pneumoniae strain isolated from a primary liver abscess. J Bacteriol. 2008;190:515–26. pmcentrez&rendertype=abstract

Lai YC, Lin AC, Chiang MK, Dai YH, Hsu CC, Lu MC, et al. Genotoxic Klebsiella pneumoniae in Taiwan. PLoS One. 2014;9:e96292.

Lam MMC, Wyres KL, Duchêne S, Wick RR, Judd LM, Gan Y, et al. Population genomics of hypervirulent Klebsiella pneumoniae clonal group 23 reveals early emergence and rapid global dissemination. Nat Commun. 2018;9:2703.

Lam MCC, Wyres KL, Judd LM, Wick RR, Jenney A, Brisse S, et al. Tracking key virulence loci encoding aerobactin and salmochelin siderophore synthesis in Klebsiella pneumoniae. Genome Med. 2018;10:77.

Martin RM, Cao J, Brisse S, Passet V, Wu W, Zhao L, et al. Molecular epidemiology of colonizing and infecting isolates of Klebsiella pneumoniae. mSphere. 2016;1(5). eCollection 2016 Sep-Oct.

Dong N, Lin D, Zhang R, Chan EWC, Chen S. Carriage of blaKPC-2 by a virulence plasmid in hypervirulent Klebsiella pneumoniae. J Antimicrob Chemother. 2018;73:3317–21.

Lam MMC, Wyres KL, Wick RR, Judd LM, Fostervold A, Holt KE, et al. Convergence of virulence and multidrug resistance in a single plasmid vector in multidrug-resistant Klebsiella pneumoniae ST15. J Antimicrob Chemother. 2019;74:1218–22.

Shen D, Ma G, Li C, Jia X, Qin C, Yang T, et al. Emergence of a multidrug-resistant hypervirulent Klebsiella pneumoniae of ST23 with a rare blaCTX-M-24 -harboring virulence plasmid. Antimicrob Agents Chemother. 2019;63:e02273–18.

Turton J, Davies F, Turton J, Perry C, Payne Z, Pike R. Hybrid resistance and virulence plasmids in “high-risk” clones of Klebsiella pneumoniae, including those carrying blaNDM-5. Microorganisms. 2019;7:326.

Gundestrup S, Struve C, Stahlhut SG, Hansen DS. First case of liver abscess in Scandinavia due to the international hypervirulent Klebsiella pneumoniae clone ST23. Open Microbiol J. 2014;8:22–4.

Vila A, Cassata A, Pagella H, Amadio C, Yeh KK-M, Chang FF-Y, et al. Appearance of Klebsiella pneumoniae liver abscess syndrome in Argentina: case report and review of molecular mechanisms of pathogenesis. Open Microbiol J. 2011;5:107–13.

Decré D, Verdet C, Emirian A, Le Gourrierec T, Petit JC, Offenstadt G, et al. Emerging severe and fatal infections due to Klebsiella pneumoniae in two university hospitals in France. J Clin Microbiol. 2011;49:3012–4.

Hall JM, Hall JM, Ingram PR, Bs MB, Reilly LCO, Inglis TJJ. Temporal flux in beta-lactam resistance among Klebsiella pneumoniae in Western Australia. J Med Microbiol. 2016;65:429–37.

Wyres KL, Wick RR, Judd LM, Froumine R, Tokolyi A, Gorrie CL, et al. Distinct evolutionary dynamics of horizontal gene transfer in drug resistant and virulent clones of Klebsiella pneumoniae. PLoS Genet. 2019;15:e1008114.

Stoesser N, Batty EM, Eyre DW, Morgan M, Wyllie DH, Del Ojo EC, et al. Predicting antimicrobial susceptibilities for Escherichia coli and Klebsiella pneumoniae isolates using whole genomic sequence data. J Antimicrob Chemother. 2013;68:2234–44.