Genomic stability among O3:K6 V. parahaemolyticus pandemic strains isolated between 1996 to 2012 in American countries
Tóm tắt
The V. parahaemolyticus pandemic clone, results in the development of gastrointestinal illness in humans. Toxigenic strains of this species are frequently isolated from aquatic habitats and organisms such as mollusks and crustaceans. Reports on the isolation of the pandemic clone started in 1996, when a new O3:K6 clone was identified in Asia, that rapidly spread worldwide, becoming the predominant clone isolated from clinical cases. In this study whole genome sequencing was accomplished with an Illumina MiniSeq platform, upon six novel V. parahaemolyticus strains, that have been isolated in Mexico since 1998 and three representative genomes of strains that were isolated from reported outbreaks in other American countries, and were deposited in the GenBank. These nine genomes were compared against the reference sequence of the O3:K6 pandemic strain (RIMD 2210633), which was isolated in 1996, to determine sequence differences within American isolates and between years of isolation. The results indicated that strains that were isolated at different times and from different countries, were highly genetically similar, among them as well as to the reference strain RIMD 2210633, indicating a high level of genetic stability among the strains from American countries between 1996 to 2012, without significant genetic changes relative to the reference strain RIMD 2210633, which was isolated in 1996 and was considered to be representative of a novel O3:K6 pandemic strain. The genomes of V. parahaemolyticus strains isolated from clinical and environmental sources in Mexico and other American countries, presented common characteristics that have been reported for RIMD 2210633 O3:K6 pandemic strain. The major variations that were registered in this study corresponded to genes non associated to virulence factors, which could be the result of adaptations to different environmental conditions. Nevertheless, results do not show a clear pattern with the year or locality where the strains were isolated, which is an indication of a genomic stability of the studied strains.
Tài liệu tham khảo
Nair GB, Ramamurthy T, Bhattacharya SK, Dutta B, Takeda Y, Sack DA. Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants. Clin Microbiol Rev. 2007;20(1):39–48. https://doi.org/10.1128/CMR.00025-06.
Ceccarelli D, Hasan NA, Huq A, Colwell RR. Distribution and dynamics of epidemic and pandemic Vibrio parahaemolyticus virulence factors. Front Cell Infect Microbiol. 2013;3:97.
Nishibuchi M, Fasano A, Russell RG, Kaper JB. Enterotoxigenicity of Vibrio parahaemolyticus with and without genes encoding thermostable direct hemolysin. Infect Immun. 1992;60(9):3539–45. https://doi.org/10.1128/iai.60.9.3539-3545.1992.
Bej AK, Patterson DP, Brasher CW, Vickery MC, Jones DD, Kaysner CA. Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh and trh. J Microbiol Methods. 1999;36(3):215–25. https://doi.org/10.1016/S0167-7012(99)00037-8.
Nordstrom JL, Vickery MCL, Blackstone GM, Murray SL, DePaola A. Development of a multiplex real-time PCR assay with an internal amplification control for the detection of total and pathogenic Vibrio parahaemolyticus bacteria in oysters. Appl Environ Microbiol. 2007;73(18):5840–7. https://doi.org/10.1128/AEM.00460-07.
Abbott S, Powers C, Kaysner CA, Takeda Y, Ishibashi M, Joseph SW, et al. Emergence of a restricted bioserovar of Vibrio parahaemolyticus as the predominant cause of Vibrio-associated gastroenteritis on the west coast of the United States and Mexico. J Clin Microbiol. 1989;27(12):2891–3. https://doi.org/10.1128/jcm.27.12.2891-2893.1989.
Matsumoto C, Okuda J, Ishibashi M, Iwanaga M, Garg P, Rammamurthy T, et al. Pandemic spread of an O3:K6 clone of Vibrio parahaemolyticus and emergence of related strains evidenced by arbitrarily primed PCR and toxRS sequence analyses. J Clin Microbiol. 2000;38(2):578–85. https://doi.org/10.1128/JCM.38.2.578-585.2000.
Gavilan RG, Zamudio ML, Martinez-Urtaza J. Molecular epidemiology and genetic variation of pathogenic Vibrio parahaemolyticus in Peru. PLoS Negl Trop Dis. 2013;7(5):e2210. https://doi.org/10.1371/journal.pntd.0002210.
Gil AI, Miranda H, Lanata CF, Prada A, Hall ER, Barreno CM, et al. O3:K6 serotype of Vibrio parahaemolyticus identical to the global pandemic clone associated with diarrhea in Peru. Int J Infect Dis. 2006;11:324–8.
Velazquez-Roman J, León-Sicairos N, Hernández-Díaz LJ, Canizalez-Roman A. Pandemic Vibrio parahaemolyticus O3:K6 on the American continent. Front Cell Infect Microbiol. 2014;3:110.
Daniels NA, Ray B, Easton A, Marano N, Kahn E, McShan AL, et al. Emergence of a new Vibrio parahaemolyticus serotype in raw oysters: a prevention quandary. JAMA. 2000;284(12):1541–5. https://doi.org/10.1001/jama.284.12.1541.
García K, Torres R, Uribe P, Hernandez C, Rioseco ML, Romero J, et al. Dynamics of clinical and environmental Vibrio parahaemolyticus strains during seafood-related summer diarrhea outbreaks in southern Chile. Appl Environ Microbiol. 2009;75(23):7482–7. https://doi.org/10.1128/AEM.01662-09.
González-Escalona N, Cachicas V, Acevedo C, Rioseco ML, Vergara JA, Cabello F, et al. Vibrio parahaemolyticus diarrhea, Chile, 1998 and 2004. Emerg Infect Dis. 2005;11(1):129–31. https://doi.org/10.3201/eid1101.040762.
Leal NC, Da Silva SC, Cavalcanti VO, Figueiroa AC, Nunes VV, Miralles IS, et al. Vibrio parahaemolyticus serovar O3:K6 gastroenteritis in Northeast Brazil. J Appl Microbiol. 2008;105(3):691–7. https://doi.org/10.1111/j.1365-2672.2008.03782.x.
Guerrero A, Lizárraga-Partida ML, Gómez-Gil Rodríguez B, Licea-Navarro AF, Revilla-Castellanos VJ, Wong-Chang I, et al. Genetic Analysis of Vibrio parahaemolyticus O3:K6 strains that have been isolated in Mexico since 1998. PLoS One. 2017;12:e0169722.
Revilla-Castellanos VJ, Guerrero A, Gomez-Gil B, Navarro-Barrón E, Lizárraga-Partida ML. Pathogenic Vibrio parahaemolyticus isolated from biofouling on commercial vessels and harbor structures. Biofouling. 2015;31(3):275–82. https://doi.org/10.1080/08927014.2015.1038526.
Cabanillas-Beltrán H, LLausás-Magaña E, Romero R, Espinoza A, Garcia-Gasca A, Nishibuchi M, et al. Outbreak of gastroenteritis caused by the pandemic Vibrio parahaemolyticus O3:K6 in Mexico. FEMS Microbiol Lett. 2006;265(1):76–80. https://doi.org/10.1111/j.1574-6968.2006.00475.x.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N. et alThe sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. https://doi.org/10.1093/bioinformatics/btp352.
Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25(14):1754–60. https://doi.org/10.1093/bioinformatics/btp324.
Garcia-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz S, Tarazona S, et al. Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics. 2012;28(20):2678–9. https://doi.org/10.1093/bioinformatics/bts503.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77. https://doi.org/10.1089/cmb.2012.0021.
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics. 2008;9(1):75. https://doi.org/10.1186/1471-2164-9-75.
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–9. https://doi.org/10.1093/bioinformatics/btu153.
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31(22):3691–3. https://doi.org/10.1093/bioinformatics/btv421.
Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11(1):119. https://doi.org/10.1186/1471-2105-11-119.
Vesth T, Lagesen K, Acar Ö, Ussery D. CMG-biotools, a free workbench for basic comparative microbial genomics. PLoS One. 2013;8(4):e60120. https://doi.org/10.1371/journal.pone.0060120.
Bosi E, Donati B, Galardini M, Brunetti S, Sagot MF, Lió P, et al. MEDUSA: a multi-draft based scaffolder. Bioinformatics. 2015;31(15):2443–51. https://doi.org/10.1093/bioinformatics/btv171.
Alikhan NF, Petty NK, Zakour NLB. Beatson SABLAST ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 2011;12(1):402. https://doi.org/10.1186/1471-2164-12-402.
Hurley CC, Quirke AM, Reen FJ, Boyd EF. Four genomic islands that mark post-1995 pandemic Vibrio parahaemolyticus isolates. BMC Genomics. 2006;7(1):104. https://doi.org/10.1186/1471-2164-7-104.
Boyd EF, Cohen ALV, Naughton LM, Ussery DW, Binnewies TT, Stine OC, et al. Molecular analysis of the emergence of pandemic Vibrio parahaemolyticus. BMC Microbiol. 2008;8(1):110. https://doi.org/10.1186/1471-2180-8-110.
Chen Y, Stine OC, Badger JH, Gil AI, Nair GB, Nishibuchi M, et al. Comparative genomic analysis of Vibrio parahaemolyticus: serotype conversion and virulence. BMC Genomics. 2011;12(1):294. https://doi.org/10.1186/1471-2164-12-294.
González-Escalona N, Martinez-Urtaza J, Romero J, Espejo RT, Jaykus LA, DePaola A. Determination of molecular phylogenetics of Vibrio parahaemolyticus strains by multilocus sequence typing. J Bacteriol. 2008;190(8):2831–40. https://doi.org/10.1128/JB.01808-07.
Han H, Wong HC, Kan B, Zhaobiao G, Zeng X, Yin S, et al. Genome plasticity of Vibrio parahaemolyticus: microevolution of the 'pandemic group'. BMC Genomics. 2008;9(1):570. https://doi.org/10.1186/1471-2164-9-570.
Okuda J, Ishibashi M, Hayakawa E, Nishino T, Takeda Y, Mukhopadhyay AK, et al. Emergence of a unique O3:K6 clone of Vibrio parahaemolyticus in Calcutta, India, and isolation of strains from the same clonal group from southeast Asian travelers arriving in Japan. J Clin Microbiol. 1997;35(12):3150–5. https://doi.org/10.1128/jcm.35.12.3150-3155.1997.
Chowdhury NR, Chakraborty S, Eampokalap B, Chaicumpa W, Chongsa-Nguan M, Moolasart P, et al. Clonal dissemination of Vibrio parahaemolyticus displaying similar DNA fingerprint but belonging to two different serovars (O3:K6 and O4:K68) in Thailand and India. Epidemiol Infect. 2000a;125(1):17–25. https://doi.org/10.1017/S0950268899004070.
Chowdhury NR, Chakraborty S, Ramamurthy T, Nishibuchi M, Yamasaki S, Takeda Y, et al. Molecular evidence of clonal pandemic strains Emerg Infect Dis. 2000b;6:631–6.
Turner JW, Paranjpye RN, Landis ED, Biryukov SV, González-Escalona N, Nilsson WB, et al. Population structure of clinical and environmental Vibrio parahaemolyticus from the Pacific Northwest coast of the United States. PLoSE One. 2013;8:–e55726.
Nasu H, Iida T, Sugahara T, Yamaichi Y, Park KS, Yokoyama K, et al. A filamentous phage associated with recent pandemic Vibrio parahaemolyticus O3:K6 strains. J Clin Microbiol. 2000;38(6):2156–61. https://doi.org/10.1128/JCM.38.6.2156-2161.2000.
Myers ML, Panicker G, Bej AK. PCR detection of a newly emerged pandemic Vibrio parahaemolyticus O3:K6 pathogen in pure cultures and seeded waters from the Gulf of Mexico. Appl Environ Microbiol. 2003;69(4):2194–200. https://doi.org/10.1128/AEM.69.4.2194-2200.2003.
Ham H, Orth K. The role of type III secretion system 2 in Vibrio parahaemolyticus pathogen. J Microbiol. 2012;50(5):719–25. https://doi.org/10.1007/s12275-012-2550-2.
Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, et al. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet. 2003;361(9359):743–9. https://doi.org/10.1016/S0140-6736(03)12659-1.
Wang H, Wong MM, O’Toole D, Mak MM, Wu RS, Kong RY. Identification of a DNA methyltransferase gene carried on a pathogenicity island-like element (VPAI) in Vibrio parahaemolyticus and its prevalence among clinical and environmental isolates. Appl Environ Microbiol. 2006;72(6):4455–60. https://doi.org/10.1128/AEM.02095-05.
Izutsu K, Kurokawa K, Tashiro K, Kuhara S, Hayashi T, Honda T, et al. Comparative genomic analysis using microarray demonstrates a strong correlation between the presence of the 80-kilobase pathogenicity island and pathogenicity in Kanagawa phenomenon-positive Vibrio parahaemolyticus strains. Infect Immun. 2008;76(3):1016–23. https://doi.org/10.1128/IAI.01535-07.
Zhang L, Krachler AM, Broberg CA, Li Y, Hamid Mirzael H, Gilpin CJ, et al. Type III effector VopC mediates invasion for Vibrio species. Cell Rep. 2012;1(5):453–60. https://doi.org/10.1016/j.celrep.2012.04.004.
Li L, Wong HC, Nong W, Cheung MK, Law PT, Kam KM, et al. Comparative genomic analysis of clinical and environmental strains provides insight into the pathogenicity and evolution of Vibrio parahaemolyticus. BMC Genomics. 2014;15(1):1135. https://doi.org/10.1186/1471-2164-15-1135.