Genomic selection in sugar beet breeding populations
Tóm tắt
Genomic selection exploits dense genome-wide marker data to predict breeding values. In this study we used a large sugar beet population of 924 lines representing different germplasm types present in breeding populations: unselected segregating families and diverse lines from more advanced stages of selection. All lines have been intensively phenotyped in multi-location field trials for six agronomically important traits and genotyped with 677 SNP markers. We used ridge regression best linear unbiased prediction in combination with fivefold cross-validation and obtained high prediction accuracies for all except one trait. In addition, we investigated whether a calibration developed based on a training population composed of diverse lines is suited to predict the phenotypic performance within families. Our results show that the prediction accuracy is lower than that obtained within the diverse set of lines, but comparable to that obtained by cross-validation within the respective families. The results presented in this study suggest that a training population derived from intensively phenotyped and genotyped diverse lines from a breeding program does hold potential to build up robust calibration models for genomic selection. Taken together, our results indicate that genomic selection is a valuable tool and can thus complement the genomics toolbox in sugar beet breeding.
Tài liệu tham khảo
Meuwissen THE, Hayes BJ, Goddard ME: Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001, 157: 1819-1829.
Heffner EL, Sorrells ME, Jannink JL: Genomic Selection for Crop Improvement. Crop Sci. 2009, 49: 1-12. 10.2135/cropsci2008.08.0512.
Jannink JL, Lorenz AJ, Iwata H: Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics. 2010, 9: 166-177. 10.1093/bfgp/elq001.
Piepho HP: Ridge regression and extensions for genomewide selection maize. Crop Sci. 2009, 49: 1165-1176. 10.2135/cropsci2008.10.0595.
Crossa J, Campos G, Pérez P, Gianola D, Burgueño J, Araus JL, Makumbi D, Singh RP, Dreisigacker S, Yan J, Arief V, Banziger M, Braun HJ: Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics. 2010, 186: 713-724. 10.1534/genetics.110.118521.
Albrecht T, Wimmer V, Auinger HJ, Erbe M, Knaak C, Ouzunova M, Simianer H, Schön CC: Genome-based prediction of testcross values in maize. Theor Appl Genet. 2011, 123: 339-350. 10.1007/s00122-011-1587-7.
Guo Z, Tucker DM, Lu J, Kishore V, Gay G: Evaluation of genomewide selection efficiency in maize nested association mapping populations. Theor Appl Genet. 2011, 124: 261-275.
Zhao Y, Gowda M, Liu W, Würschum T, Maurer HP, Longin CFH, Ranc N, Reif JC: Accuracy of genomic selection in European maize elite breeding populations. Theor Appl Genet. 2012, 124: 769-776. 10.1007/s00122-011-1745-y.
Zhao Y, Gowda M, Longin CFH, Würschum T, Ranc N, Reif JC: Impact of selective genotyping in the training population on accuracy and bias of genomic selection. Theor Appl Genet. 2012, 125: 707-713. 10.1007/s00122-012-1862-2.
Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, et al: Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet. 2012, 44: 217-220. 10.1038/ng.1033.
Riedelsheimer C, Technow F, Melchinger AE: Comparison of whole-genome prediction models for traits with contrasting genetic architecture in a diversity panel of maize inbred lines. BMC Genomics. 2012, 13: 452-10.1186/1471-2164-13-452.
Zhong S, Dekkers JCM, Fernando RL, Jannink JL: Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics. 2009, 182: 355-364. 10.1534/genetics.108.098277.
Lorenzana R, Bernardo R: Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet. 2009, 120: 151-161. 10.1007/s00122-009-1166-3.
Heslot N, Yang HP, Sorrells ME, Jannink JL: Genomic selection in plant breeding: a comparison of models. Crop Sci. 2012, 52: 146-160.
Heffner EL, Jannink JL, Iwata H, Souza E, Sorrells M: Genomic selection accuracy for grain quality traits in biparental wheat populations. Crop Sci. 2011, 51: 2597-2606. 10.2135/cropsci2011.05.0253.
Rutkoski J, Benson J, Jia Y, Brown-Guedira G, Jannink JL, Sorrells ME: Evaluation of genomic prediction methods for Fusarium head blight resistance in wheat. Plant Gen. 2012, 5: 51-61. 10.3835/plantgenome2012.02.0001.
Zhao Y, Zeng J, Fernando RL, Reif JC: Genomic prediction of hybrid wheat performance. Crop Sci. 2013, 53: 802-810. 10.2135/cropsci2012.08.0463.
Hofheinz N, Borchardt D, Weissleder K, Frisch M: Genome-based prediction of test cross performance in two subsequent breeding cycles. Theor Appl Genet. 2012, 125: 1639-1645. 10.1007/s00122-012-1940-5.
Whittaker JC, Thompson R, Denham MC: Marker-assisted selection using ridge regression. Genet Res. 2000, 75: 249-252. 10.1017/S0016672399004462.
Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA: The impact of genetic architecture on genome-wide evaluation methods. Genetics. 2010, 185: 1021-1031. 10.1534/genetics.110.116855.
Habier D, Fernando RL, Dekkers JCM: The impact of genetic relationship information on genome-assisted breeding values. Genetics. 2007, 177: 2389-2397.
de Roos APW, Hayes BJ, Goddard ME: Reliability of genomic predictions across multiple populations. Genetics. 2009, 183: 1545-1553. 10.1534/genetics.109.104935.
Würschum T: Mapping QTL for agronomic traits in breeding populations. Theor Appl Genet. 2012, 125: 201-210. 10.1007/s00122-012-1887-6.
Massman JM, Gordillo A, Lorenzana RE, Bernardo R: Genomewide predictions from maize single-cross data. Theor Appl Genet. 2013, 126: 13-22. 10.1007/s00122-012-1955-y.
Würschum T, Maurer HP, Kraft T, Janssen G, Nilsson C, et al: Genome-wide association mapping of agronomic traits in sugar beet. Theor Appl Genet. 2011, 123: 1121-1131. 10.1007/s00122-011-1653-1.
Riedelsheimer C, Endelman JB, Stange M, Sorrells ME, Jannink J-L, et al: Genomic predictability of interconnected biparental maize populations. Genetics. 2013, 194: 493-503. 10.1534/genetics.113.150227.
Stram DO, Lee JW: Variance components testing in longitudinal mixed effects model. Biometrics. 1994, 50: 1171-1177. 10.2307/2533455.
Gower JC: Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika. 1966, 53: 325-338.
Wright S: Evolution and genetics of populations, variability within and among natural populations. 1978, Chicago: The University of Chicago Press, 4: 91-
Maurer HP, Melchinger AE, Frisch M: Population genetic simulation and data analysis with Plabsoft. Euphytica. 2008, 161: 133-139. 10.1007/s10681-007-9493-4.
Hoerl AE, Kennard RW: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics. 1970, 12: 55-67. 10.1080/00401706.1970.10488634.
Gianola D, De los Campos G, Hill WG, Manfredi E, Fernando R: Additive genetic variability and the bayesian alphabet. Genetics. 2009, 183: 347-363. 10.1534/genetics.109.103952.
Henderson CR: Applications of linear models in animal breeding. 1984, Univ. of Guelph Ontario, Canada
Lande R, Thompson R: Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics. 1990, 124: 743-756.
Dekkers JCM: Prediction of response to marker-assisted and genomic selection using selection index theory. J Anim Breed Genet. 2007, 124: 331-341. 10.1111/j.1439-0388.2007.00701.x.