Genomic reaction norms: using integrative biology to understand molecular mechanisms of phenotypic plasticity

Molecular Ecology - Tập 18 Số 18 - Trang 3763-3780 - 2009
Nadia Aubin‐Horth1, Susan C. P. Renn2
1Département de Sciences biologiques, Université de Montréal, Québec, Canada, H2V259
2Department of Biology Reed College, OR, USA 97202

Tóm tắt

AbstractPhenotypic plasticity is the development of different phenotypes from a single genotype, depending on the environment. Such plasticity is a pervasive feature of life, is observed for various traits and is often argued to be the result of natural selection. A thorough study of phenotypic plasticity should thus include an ecological and an evolutionary perspective. Recent advances in large‐scale gene expression technology make it possible to also study plasticity from a molecular perspective, and the addition of these data will help answer long‐standing questions about this widespread phenomenon. In this review, we present examples of integrative studies that illustrate the molecular and cellular mechanisms underlying plastic traits, and show how new techniques will grow in importance in the study of these plastic molecular processes. These techniques include: (i) heterologous hybridization to DNA microarrays; (ii) next generation sequencing technologies applied to transcriptomics; (iii) techniques for studying the function of noncoding small RNAs; and (iv) proteomic tools. We also present recent studies on genetic model systems that uncover how environmental cues triggering different plastic responses are sensed and integrated by the organism. Finally, we describe recent work on changes in gene expression in response to an environmental cue that persist after the cue is removed. Such long‐term responses are made possible by epigenetic molecular mechanisms, including DNA methylation. The results of these current studies help us outline future avenues for the study of plasticity.

Từ khóa


Tài liệu tham khảo

10.1038/nature04843

10.1126/science.1072152

10.1038/75556

10.1016/j.bbr.2006.02.027

10.1111/j.0014-3820.2004.tb01580.x

Aubin‐Horth N, 2005, Alternative life histories shape brain gene expression profiles in males of the same population, Proceedings. Biological Sciences, 272, 1655

10.1093/jhered/esi030

10.1139/F06-103

10.1111/j.1365-294X.2007.03249.x

10.1016/j.tig.2008.01.006

10.1007/s00359-005-0025-1

10.1242/jeb.00442

Bochdanovits Z, 2004, Antagonistic pleiotropy for life‐history traits at the gene expression level, Proceedings. Biological Sciences, 271, S75

10.1104/pp.103.023549

10.1111/j.1461-0248.2007.01130.x

10.1242/jeb.02292

10.1371/journal.pbio.0030363

10.1016/j.yhbeh.2006.09.008

10.1093/oxfordjournals.molbev.a003940

10.1126/science.1112014

10.1016/S0065-3454(06)36004-4

10.1016/j.cbpa.2007.06.383

10.1093/bioinformatics/bth205

10.1073/pnas.0802432105

10.1016/0968-0004(92)90010-7

10.1016/S0968-0004(00)01712-6

10.1242/jeb.02256

10.1186/1471-2156-8-87

10.1111/j.1365-2583.2008.00802.x

10.1111/j.1558-5646.2007.00203.x

10.1098/rspb.2007.1454

10.1098/rspb.2006.3516

10.1186/1471-2164-8-109

10.1111/j.1365-294X.2005.02968.x

10.1093/aob/mcn205

10.1038/nature06810

10.1002/pmic.200600954

10.1371/journal.pone.0002693

10.1186/1471-2164-7-57

10.1126/science.1162986

10.1016/S0022-1910(03)00020-9

10.1111/j.1365-294X.2008.03699.x

10.1186/gb-2000-2-1-research0001

10.1007/BF00005997

10.1073/pnas.90.16.7794

10.1111/j.1095-8649.2008.01904.x

10.1242/jeb.02244

10.1002/yea.1512

10.1091/mbc.11.12.4241

10.1007/BF02705151

Gilbert SF, 2009, Ecological Developmental Biology: Integrating Epigenetics, Medicine, and Evolution

10.1073/pnas.0403627101

10.1074/mcp.M400219-MCP200

10.1038/nature07001

10.1126/science.1150427

10.1016/S0070-2153(08)60364-6

10.1073/pnas.96.24.14171

10.1073/pnas.0708406105

10.1073/pnas.0608396103

10.1007/s00360-008-0261-0

10.1007/BF01238277

10.1371/journal.pgen.0010039

10.1126/science.1141319

10.1186/gb-2007-8-8-r172

10.1007/s00438-002-0727-9

10.1111/j.1365-294X.2006.03178.x

10.1111/j.1469-185X.2008.00073.x

10.1093/bioinformatics/bti565

10.1093/icb/43.5.658

10.1016/j.cub.2008.02.015

10.1126/science.1153069

10.1111/j.1365-294X.2007.03504.x

10.1016/j.gene.2005.10.042

10.1073/pnas.0611402104

10.1111/j.1365-2583.2007.00761.x

10.1002/pmic.200601021

10.1371/journal.pgen.0020222

10.1016/j.ceb.2008.01.006

10.1126/science.277.5332.1659

10.1186/1471-2164-8-153

10.1093/molbev/msn040

10.1038/nature03959

10.1101/gr.079558.108

10.1111/j.1365-294X.2006.03102.x

10.1038/ng1291

10.1016/j.tins.2005.07.006

10.1002/pmic.200800231

10.1126/science.277.5327.834

10.1186/gb-2007-8-6-217

10.1016/j.bbr.2005.07.011

10.1186/1751-0473-3-5

10.1186/1471-2164-5-96

10.1534/genetics.107.074468

10.1098/rspb.2008.0251

10.56021/9780801867880

10.1016/j.tree.2005.06.001

10.1242/jeb.02070

10.1038/nbt1405

10.1016/j.ymeth.2008.09.022

10.1098/rspb.2003.2372

10.1126/science.1073374

10.1016/j.cub.2004.06.046

10.1101/gr.7073008

10.1371/journal.pgen.1000100

10.1186/1471-2164-5-42

10.1242/jeb.018242

10.1038/nrg2363

10.1126/science.1159277

10.1016/j.tree.2008.11.004

10.1111/j.1095-8649.1990.tb04319.x

10.1016/j.tibtech.2007.07.001

10.1186/1471-2164-9-96

Schlichting CD, 1998, Phenotypic Evolution: A Reaction Norm Perspective

10.1186/1471-2105-9-180

10.1086/303282

10.1038/nrg2270

10.1038/ng1434

10.1002/0471142727.mb0701s81

10.1093/bioinformatics/btm173

10.1186/1741-7007-6-30

10.1073/pnas.0709764105

10.1523/JNEUROSCI.2757-08.2008

10.1091/mbc.9.12.3273

10.1086/367983

10.1073/pnas.0506580102

10.1016/j.ygeno.2006.09.010

10.1126/science.1118888

10.1093/jhered/92.2.100

10.1111/j.1365-2109.1994.tb00668.x

10.1023/A:1022351814644

10.1038/ng893

10.1016/j.tree.2007.09.002

10.1038/nprot.2007.314

10.1126/science.1146647

10.1016/j.bbr.2007.02.014

10.1007/s00335-009-9187-4

10.1111/j.1365-294X.2008.03666.x

10.1093/icb/43.2.239

10.1104/pp.107.096677

10.1111/j.1462-2920.2007.01383.x

10.1111/j.1365-2435.2007.01283.x

White SA, 2002, Social regulation of gonadotropin‐releasing hormone, Journal of Experimental Biology, 205, 2567, 10.1242/jeb.205.17.2567

10.1101/gr.5302

10.1126/science.1086807

10.1073/pnas.0606909103

10.1186/1471-2164-7-275

Williams D, 2004, Post‐genomic approaches to the mechanisms of cold response in fish and hibernating small mammals, Biological Papers of the University of Alaska, 27, 467

10.1111/j.1095-8649.2008.01875.x

10.1186/1471-2105-6-227

10.1158/0008-5472.CAN-07-0382

10.1086/423825

10.1016/j.copbio.2007.07.004

10.1371/journal.pgen.0020115

10.1016/j.ibmb.2008.03.009