Các Mô Hình Di Truyền Của Sự Tiến Hóa Vi Khuẩn Gây Bệnh Được Tiết Lộ Qua Sự So Sánh Giữa Burkholderia pseudomallei, Nguyên Nhân Gây Bệnh Melioidosis, Và Burkholderia thailandensis Không Có Tính Độc Lực

BMC Microbiology - Tập 6 Số 1 - 2006
Yiting Yu1, Masayuki Machida2, Hui Hoon Chua1, Chi Ho Lin1, Siew Hoon Sim3, Daoxun Lin1, Alan Derr4, Reinhard Engels4, David DeShazer5, Bruce W. Birren4, William C. Nierman2, Patrick Tan6
1Genome Institute of Singapore, Singapore 138672, Republic of Singapore
2The Institute for Genomic Research, Rockville, MD 20850, USA
3Defense Medical and Environmental Research Institute (DMERI), DSO National Laboratories, Singapore, 117510, Republic of Singapore
4The Broad Institute, Cambridge, MA, 02141, USA
5Bacteriology Division, US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, 21702, USA
6National Cancer Centre, Singapore, 169610, Republic of Singapore

Tóm tắt

Tóm Tắt Bối Cảnh Vi khuẩn Gram âm Burkholderia pseudomallei (Bp) là tác nhân gây bệnh melioidosis ở người. Để hiểu rõ các cơ chế tiến hoá đóng góp vào tính độc lực của Bp, chúng tôi đã thực hiện phân tích di truyền so sánh Bp K96243 và B. thailandensis (Bt) E264, một họ hàng gần nhưng không có tính độc lực. Kết Quả Chúng tôi phát hiện rằng các bộ gene của Bp và Bt có sự tương đồng đáng kể, bao gồm hai nhiễm sắc thể có tính syntenic cao với số lượng vùng mã hoá protein và phân bố họ protein tương tự, kèm theo các đảo gene có được qua việc thụ đắc theo chiều ngang. Những vùng gene loài‐đặc thù này đã giúp chúng tôi giải thích các khác biệt về chuyển hoá đã được biết trước, khám phá những khác biệt mới tiềm năng, và nhận thấy việc thụ đắc cụm gene polysaccharide dạng vỏ trong Bp, một thành phần chính cho tính độc lực, có thể đã xảy ra không ngẫu nhiên thông qua sự thay thế cụm polysaccharide tổ tiên. Các gene liên quan đến độc lực, đặc biệt là các thành viên của phức hợp kim tiêm Type III, có sự phân hoá cao hơn giữa Bp và Bt so với phần còn lại của bộ gene, có thể góp phần vào khả năng xâm nhập vật chủ động vật có vú của Bp. Phân tích các gene giả giữa hai loài cho thấy sự vô hiệu hóa protein có xu hướng đáng kể hơn đối với protein liên quan đến màng trong Bt và các yếu tố điều hòa phiên mã trong Bp. Kết Luận Kết quả của chúng tôi cho thấy một số ít sự kiện thụ đắc theo chiều ngang, kèm theo sự điều chỉnh chức năng tinh vi của các protein hiện có, có thể là động lực chính tạo ra tính độc lực của Bp. Sự tương đồng diện rộng trong bộ gene giữa Bp và Bt gợi ý rằng, trong một số trường hợp, Bt có thể là hệ thống mẫu khả thi để nghiên cứu một số khía cạnh của hành vi Bp.

Từ khóa

#Burkholderia pseudomallei #Burkholderia thailandensis #melioidosis #tiến hóa vi khuẩn #phân tích di truyền #tính độc lực của vi khuẩn #đảo gene #phức hợp kim tiêm Type III #gene giả

Tài liệu tham khảo

Walsh C: Molecular mechanisms that confer antibacterial drug resistance. Nature. 2000, 406: 775-781. 10.1038/35021219.

Scarselli M, Giuliani MM, Adu-Bobie J, Pizza M, Rappuoli R: The impact of genomics on vaccine design. Trends Biotechnol. 2005, 23: 84-91. 10.1016/j.tibtech.2004.12.008.

Baar C, Eppinger M, Raddatz G, Simon J, Lanz C, Klimmek O, Nandakumar R, Gross R, Rosinus A, Keller H, Jagtap P, Linke B, Meyer F, Lederer H, Schuster SC: Complete genome sequence and analysis of Wolinella succinogenes. Proc Natl Acad Sci. 2003, 100: 11690-11695. 10.1073/pnas.1932838100.

Dobrindt U, Hochhut B, Hentschel U, Hacker J: Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol. 2004, 2: 414-424. 10.1038/nrmicro884.

Chain PS, Carniel E, Larimer FW, Lamerdin J, Stoutland PO, Regala WM, Georgescu AM, Vergez LM, Land ML, Motin VL, Brubaker RR, Fowler J, Hinnebusch J, Marceau M, Medigue C, Simonet M, Chenal-Francisque V, Souza B, Dacheux D, Elliott JM, Derbise A, Hauser LJ, Garcia E: Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci USA. 2004, 101: 13826-13831. 10.1073/pnas.0404012101.

Vedros NA, Chow D, Liong E: Experimental vaccine against Pseudomonas pseudomallei infections in captive cetaceans. Dis Aquat Org. 1988, 5: 157-161.

Dance DAB: Melioidosis: the tip of the iceberg. Clin Microbiol Rev. 1991, 4: 52-60.

Yabuuchi E, Arakawa M: Burkholderia pseudomallei and melioidosis: be aware in temperate area. Microbiol Immunol. 1993, 37: 823-836.

Rotz LD, Khan AS, Lillibridge SR, Ostroff SM, Hughes JM: Public health assessment of potential biological terrorism agents. Emerg Infect Dis. 2002, 8: 225-230.

Wuthiekanun V, Smith MD, Dance DA, Walsh AL, Pitt TL, White NJ: Biochemical characteristics of clinical and environmental isolates of Burkholderia pseudomallei. J Med Microbiol. 1996, 45: 408-412.

Brett PJ, Deshazer D, Woods DE: Characterization of Burkholderia pseudomallei and Burkholderia pseudomallei-like strains. Epidemiol Infect. 1997, 118: 137-148. 10.1017/S095026889600739X.

Brett PJ, DeShazer D, Woods DE: Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei-like species. Int J Syst Bacteriol. 1998, 48: 317-320.

Kim HS, Schell MA, Yu Y, Ulrich RL, Sarria SH, Nierman WC, DeShazer D: Bacterial genome adaptation to niches: Divergence of the potential virulence genes in three Burkholderia species of different survival strategies. BMC Genomics. 2005, 6: 174-10.1186/1471-2164-6-174.

Cummings CA, Brinig MM, Lepp PW, van de Pas S, Relman DA: Bordetella species are distinguished by patterns of substantial gene loss and host adaptation. J Bacteriol. 2004, 186: 1484-1492. 10.1128/JB.186.5.1484-1492.2004.

Holden MT, Titball RW, Peacock SJ, Cerdeno-Tarraga AM, Atkins T, Crossman LC, Pitt T, Churcher C, Mungall K, Bentley SD, Sebaihia M, Thomson NR, Bason N, Beacham IR, Brooks K, Brown KA, Brown NF, Challis GL, Cherevach I, Chillingworth T, Cronin A, Crossett B, Davis P, DeShazer D, Feltwell T, Fraser A, Hance Z, Hauser H, Holroyd S, Jagels K, Keith KE, Maddison M, Moule S, Price C, Quail MA, Rabbinowitsch E, Rutherford K, Sanders M, Simmonds M, Songsivilai S, Stevens K, Tumapa S, Vesaratchavest M, Whitehead S, Yeats C, Barrell BG, Oyston PC, Parkhill J: Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci USA. 2004, 101: 14240-14245. 10.1073/pnas.0403302101.

Coenye T, Vandamme P: Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol. 2003, 5: 719-729. 10.1046/j.1462-2920.2003.00471.x.

Nierman WC, DeShazer D, Kim HS, Tettelin H, Nelson KE, Feldblyum T, Ulrich RL, Ronning CM, Brinkac LM, Daugherty SC, Davidsen TD, Deboy RT, Dimitrov G, Dodson RJ, Durkin AS, Gwinn ML, Haft DH, Khouri H, Kolonay JF, Madupu R, Mohammoud Y, Nelson WC, Radune D, Romero CM, Sarria S, Selengut J, Shamblin C, Sullivan SA, White O, Yu Y, Zafar N, Zhou L, Fraser CM: Structural flexibility in the Burkholderia mallei genome. Proc Natl Acad Sci USA. 2004, 101: 14246-14251. 10.1073/pnas.0403306101.

Ochman H, Wilson AC: Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol. 1987, 26: 74-86. 10.1007/BF02111283.

Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, Carniel E: Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci. 1999, 96: 14043-14048. 10.1073/pnas.96.24.14043.

Ochman H, Jones IB: Evolutionary dynamics of full genome content in Escherichia coli. EMBO J. 2000, 19: 6637-6643. 10.1093/emboj/19.24.6637.

DeShazer D, Brett PJ, Woods DE: The type II O-antigenic polysaccharide moiety of Burkholderia pseudomallei lipopolysaccharide is required for serum resistance and virulence. Mol Microbiol. 1998, 30: 1081-1100. 10.1046/j.1365-2958.1998.01139.x.

Soldo B, Lazarevic V, Karamata D: tagO is involved in the synthesis of all anionic cell-wall polymers in Bacillus subtilis 168. Microbiology. 2002, 148: 2079-2087.

Woods DE, Jeddeloh JA, Fritz DL, DeShazer D: Burkholderia thailandensis E125 harbors a temperate bacteriophage specific for Burkholderia mallei. J Bacteriol. 2002, 184: 4003-4017. 10.1128/JB.184.14.4003-4017.2002.

Smith MD, Angus B, Wuthiekanun V, White NJ: Arabinose assimilation defines a non-virulent biotype of Burkholderia pseudomallei. Infect Immun. 1997, 65: 4319-4321.

Moore RA, Reckseidler-Zenteno S, Kim H, Nierman W, Yu Y, Tuanyok A, Warawa J, DeShazer D, Woods DE: Contribution of gene loss to the pathogenic evolution of Burkholderia pseudomallei and Burkholderia mallei. Infect Immun. 2004, 72: 4172-4187. 10.1128/IAI.72.7.4172-4187.2004.

Makino K, Kim SK, Shinagawa H, Amemura M, Nakata A: Molecular analysis of the cryptic and functional phn operons for phosphonate use in Escherichia coli K-12. J Bacteriol. 1991, 173: 2665-2672.

Wanner BL, Metcalf WW: Molecular genetic studies of a 10.9-kb operon in Escherichia coli for phosphonate uptake and biodegradation. FEMS Microbiol Lett. 1992, 79: 133-139.

Kespichayawattana W, Intachote P, Utaisincharoen P, Sirisinha S: Virulent Burkholderia pseudomallei is more efficient than avirulent Burkholderia thailandensis in invasion of and adherence to cultured human epithelial cells. Microb Pathog. 2004, 36: 287-292. 10.1016/j.micpath.2004.01.001.

Reckseidler SL, DeShazer D, Sokol PA, Woods DE: Detection of bacterial virulence genes by subtractive hybridization: identification of capsular polysaccharide of Burkholderia pseudomallei as a major virulence determinant. Infect Immun. 2001, 69: 34-44. 10.1128/IAI.69.1.34-44.2001.

Maki M, Jarvinen N, Rabina J, Roos C, Maaheimo H, Renkonen R, Pirkko , Mattila : Functional expression of Pseudomonas aeruginosa GDP-4-keto-6-deoxy-D-mannose reductase which synthesizes GDP-rhamnose. Eur J Biochem. 2002, 269: 593-601. 10.1046/j.0014-2956.2001.02688.x.

Latifi A, Winson MK, Foglino M, Bycroft BW, Stewart GS, Lazdunski A, Williams P: Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol. 1995, 17: 333-343.

Rainbow L, Hart CA, Winstanley C: Distribution of type III secretion gene clusters in Burkholderia pseudomallei, B. thailandensis and B. mallei. J Med Microbiol. 2002, 51: 374-384.

Gough J, Karplus K, Hughey R, Chothia C: Assignment of Homology to Genome Sequences using a Library of Hidden Markov Models that Represent all Proteins of Known Structure. J Mol Biol. 2001, 313: 903-919. 10.1006/jmbi.2001.5080.

Marlovits TC, Kubori T, Sukhan A, Thomas DR, Galan JE, Unger VM: Structural insights into the assembly of the type III secretion needle complex. Science. 2004, 306: 1040-1042. 10.1126/science.1102610.

Balakirev ES, Ayala FJ: Pseudogenes: are they "junk" or functional DNA?. Annu Rev Genet. 2003, 37: 123-151. 10.1146/annurev.genet.37.040103.103949.

Lerat E, Ochman H: Psi-Phi: exploring the outer limits of bacterial pseudogenes. Genome Res. 2004, 14: 2273-2278. 10.1101/gr.2925604.

Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K, Yokoyama K, Han CG, Ohtsubo E, Nakayama K, Murata T, Tanaka M, Tobe T, Iida T, Takami H, Honda T, Sasakawa C, Ogasawara N, Yasunaga T, Kuhara S, Shiba T, Hattori M, Shinagawa H: Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 2001, 8: 11-22. 10.1093/dnares/8.1.11.

Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, Berche P, Bloecker H, Brandt P, Chakraborty T, Charbit A, Chetouani F, Couve E, de Daruvar A, Dehoux P, Domann E, Dominguez-Bernal G, Duchaud E, Durant L, Dussurget O, Entian KD, Fsihi H, Garcia-del Portillo F, Garrido P, Gautier L, Goebel W, Gomez-Lopez N, Hain T, Hauf J, Jackson D, Jones LM, Kaerst U, Kreft J, Kuhn M, Kunst F, Kurapkat G, Madueno E, Maitournam A, Vicente JM, Ng E, Nedjari H, Nordsiek G, Novella S, de Pablos B, Perez-Diaz JC, Purcell R, Remmel B, Rose M, Schlueter T, Simoes N, Tierrez A, Vazquez-Boland JA, Voss H, Wehland J, Cossart P: Comparative genomics of Listeria species. Science. 2001, 294: 849-852. 10.1126/science.1063447.

Rasko DA, Ravel J, Okstad OA, Helgason E, Cer RZ, Jiang L, Shores KA, Fouts DE, Tourasse NJ, Angiuoli SV, Kolonay J, Nelson WC, Kolsto AB, Fraser CM, Read TD: The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. Nucleic Acids Res. 2004, 32: 977-988. 10.1093/nar/gkh258.

Welch RA, Burland V, Plunkett G, Redford P, Roesch P, Rasko D, Buckles EL, Liou SR, Boutin A, Hackett J, Stroud D, Mayhew GF, Rose DJ, Zhou S, Schwartz DC, Perna NT, Mobley HL, Donnenberg MS, Blattner FR: Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA. 2002, 99: 17020-17024. 10.1073/pnas.252529799.

Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, Holden MT, Churcher CM, Bentley SD, Mungall KL, Cerdeno-Tarraga AM, Temple L, James K, Harris B, Quail MA, Achtman M, Atkin R, Baker S, Basham D, Bason N, Cherevach I, Chillingworth T, Collins M, Cronin A, Davis P, Doggett J, Feltwell T, Goble A, Hamlin N, Hauser H, Holroyd S, Jagels K, Leather S, Moule S, Norberczak H, O'Neil S, Ormond D, Price C, Rabbinowitsch E, Rutter S, Sanders M, Saunders D, Seeger K, Sharp S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Unwin L, Whitehead S, Barrell BG, Maskell DJ: Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet. 2003, 35: 32-40. 10.1038/ng1227.

Warawa J, Woods DE: Type III secretion system cluster 3 is required for maximal virulence of Burkholderia pseudomallei in a hamster infection model. FEMS Microbiol Lett. 2005, 242: 101-108. 10.1016/j.femsle.2004.10.045.

Ahmed K, Enciso HD, Masaki H, Tao M, Omori A, Traravichikul P, Nagatake T: Attachment of Burkholderia pseudomallei to pharyngeal epithelial cells: a highly pathogenic bacteria with low attachment ability. Am J Trop Med Hyg. 1999, 60: 90-93.

Brown NF, Boddey JA, Flegg CP, Beacham IR: Adherence of Burkholderia pseudomallei cells to cultured human epithelial cell lines is regulated by growth temperature. Infect Immun. 2002, 70: 974-980. 10.1128/IAI.70.2.974-980.2002.

Reckseidler-Zenteno SL, DeVinney R, Woods DE: The capsular polysaccharide of Burkholderia pseudomallei contributes to survival in serum by reducing complement factor C3b deposition. Infect Immun. 2005, 73: 1106-1115. 10.1128/IAI.73.2.1106-1115.2005.

O'Quinn AL, Wiegand EM, Jeddeloh JA: Burkholderia pseudomallei kills the nematode Caenorhabditis elegans using an endotoxin-mediated paralysis. Cell Microbiol. 2001, 3: 381-393. 10.1046/j.1462-5822.2001.00118.x.

Kumar S, Tamura K, Nei M: MEGA3: Integrated Software for Molecular Evolutionary Genetics Analysis and Sequence Alignment. Brief Bioinform. 2004, 5: 150-163. 10.1093/bib/5.2.150.

Delcher AL, Harmon D, Kasif S, White O, Salzberg SL: Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 1999, 27: 4636-4641. 10.1093/nar/27.23.4636.

Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL: Versatile and open software for comparing large genomes. Genome Biol. 2004, 5: R12-10.1186/gb-2004-5-2-r12.

ARGO Genome Browser. http://www.broad.mit.edu/annotation/argo/

Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22: 4673-4680.

Yang Z, Nielsen R: Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol. 2000, 17: 32-43.

Yang Z: PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997, 13: 555-556.

Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M: ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006, D32-6. 10.1093/nar/gkj014. 34 Database