Genomic evidence for rod monochromacy in sloths and armadillos suggests early subterranean history for Xenarthra

Proceedings of the Royal Society B: Biological Sciences - Tập 282 Số 1800 - Trang 20142192 - 2015
Christopher A. Emerling1, Mark S. Springer1
1Department of Biology, University of California – Riverside, 900 University Avenue, Riverside CA 92521, USA

Tóm tắt

Rod monochromacy is a rare condition in vertebrates characterized by the absence of cone photoreceptor cells. The resulting phenotype is colourblindness and low acuity vision in dim-light and blindness in bright-light conditions. Early reports of xenarthrans (armadillos, sloths and anteaters) suggest that they are rod monochromats, but this has not been tested with genomic data. We searched the genomes ofDasypus novemcinctus(nine-banded armadillo),Choloepus hoffmanni(Hoffmann's two-toed sloth) andMylodon darwinii(extinct ground sloth) for retinal photoreceptor genes and examined them for inactivating mutations. We performed PCR and Sanger sequencing on cone phototransduction genes of 10 additional xenarthrans to test for shared inactivating mutations and estimated the timing of inactivation for photoreceptor pseudogenes. We concluded that a stem xenarthran became an long-wavelength sensitive-cone monochromat following a missense mutation at a critical residue inSWS1, and a stem cingulate (armadillos, glyptodonts and pampatheres) and stem pilosan (sloths and anteaters) independently acquired rod monochromacy early in their evolutionary history following the inactivation ofLWSandPDE6C, respectively. We hypothesize that rod monochromacy in armadillos and pilosans evolved as an adaptation to a subterranean habitat in the early history of Xenarthra. The presence of rod monochromacy has major implications for understanding xenarthran behavioural ecology and evolution.

Từ khóa


Tài liệu tham khảo

10.1016/S1350-9462(00)00012-4

10.1111/j.1365-294X.2012.05617.x

10.1017/S0952523812000429

10.1017/S0952523813000242

10.1098/rspb.2013.0508

10.1371/journal.pgen.1003432

10.1016/j.ympev.2014.05.016

10.1126/science.1067179

Gaudin TJ, 2008, The biology of Xenarthra, 24

McKenna MC, 1997, Classification of mammals above the species level

10.1016/S0169-5347(98)01457-8

10.1890/08-1494.1

10.1086/279370

Goffart M, 1971, Function and form in the sloth

10.2307/1380987

Eisenberg JF, 1999, Mammals of the Neotropics (volume 3): the Central Neotropics—Ecuador, Peru, Bolivia, Brazil

de Carvalho Oliveira L Mendel S Loretto D de Sousa e Silva Junior J& Fernandes G. 2006 Edentates of the Saracá-Taquera National Forest Pará Brazil. Edentata 3–7.

de Sampaio C, 2006, Responses of a specialized insectivorous mammal (Myrmecophaga tridactyla) to variation in ambient temperature, Biotropica, 38, 52, 10.1111/j.1744-7429.2006.00106.x

10.1002/jmor.1050460202

Walls GL, 1942, The vertebrate eye and its adaptive radiation

Watillon M, 1969, The eye of the sloth (Choloepus hoffmanni Peters), Acta Zool. Pathol. Antverp., 49, 107

Piggins D, 1985, The evolution and ecology of armadillos, sloths and vermilinguas, 191

10.1038/46947

Parry JWL, 2002, Visual pigment coexpression in guinea pig cones: a microspectrophotometric study, Invest. Ophthalmol. Vis. Sci., 43, 1662

10.1073/pnas.0813201106

Drummond AJ Ashton B Buxton S Cheung M Cooper A Duran C& Heled J. 2012 G eneious v. 5.6.5. See http://www.geneious.com.

Rambaut A. 1996 Se-Al: Sequence Alignment editor. See http://tree.bio.ed.ac.uk/software/seal/.

10.1093/nar/gkh340

10.1093/nar/28.21.4364

10.1371/journal.pgen.1000634

10.1126/science.1211028

10.1186/1471-2148-13-52

10.1038/935

10.1016/j.ygeno.2009.10.003

10.1136/jmg.2003.011437

10.1093/hmg/9.14.2107

10.1093/hmg/11.16.1823

10.1086/341835

10.1167/iovs.05-1468

Akhmedov NB, 1998, Canine cone transducin-gamma gene and cone degeneration in the cd dog, Invest. Ophthalmol. Vis. Sci., 39, 1775

10.1523/JNEUROSCI.3136-07.2007

10.1016/j.ajhg.2009.06.016

10.1073/pnas.0907720106

10.1016/j.ajhg.2012.07.006

10.1523/JNEUROSCI.5204-12.2013

10.1177/0269881110376683

10.1371/journal.pone.0063934

10.1016/j.ympev.2011.11.008

10.1007/s00239-004-0289-z

10.1038/gim.2012.73

10.1073/pnas.90.12.5499

10.1038/343364a0

10.1021/bi00186a011

10.1016/j.jmb.2009.11.015

10.1159/000314278

10.1098/rspb.2012.2258

10.1206/0003-0082(2006)3536[1:PPXFCC]2.0.CO;2

10.1016/j.jsames.2005.06.012

10.1007/BF00243403

10.1242/jeb.045914

Simpson G, 1931, Metacheiromys and the Edentata, Bull. Am. Museum Nat. Hist., 59, 295

Groenewald G, 1991, Burrow casts from the Lystrosaurus–Procolophon Assemblage-zone, Karoo Sequence, South Africa, Koedoe-African Prot. Area Conserv. Sci., 34, 13

10.1098/rspb.2003.2427

10.1126/science.1108875

10.1371/journal.pone.0064978

10.1130/B25402.1

Bergqvist L, 2004, The Xenarthra (Mammalia) of São José de Itaboraí Basin (Upper Paleocene, Itaboraian), Rio de Janeiro, Brazil, Geodiversitas, 26, 323

10.1671/0272-4634(2000)020[0601:LBPSAD]2.0.CO;2

Vizcaíno S, 2001, Pleistocene burrows in the Mar del Plata area (Argentina) and their probable builders, Acta Palaeontol. Pol., 46, 289

10.1016/j.palaeo.2005.12.006

10.1016/j.quaint.2009.07.001

10.1016/j.crpv.2012.07.003

10.1111/j.1502-3931.2011.00301.x

10.1007/s10914-012-9185-2

McDonald HG, 2003, Xenarthran skeletal anatomy: primitive or derived?, Senckenb. Biol., 83, 5

10.1002/jmor.1052140105

10.1007/s10914-011-9174-x