Genomic characterization of human rotavirus G8 strains from the African rotavirus network: Relationship to animal rotaviruses

Journal of Medical Virology - Tập 81 Số 5 - Trang 937-951 - 2009
Mathew D. Esona1,2, A. Geyer3,2, Nicola Page2,4, Abdelhalim Trabelsi5,2, I. Fodha5,2, Maryam Aminu6,2, V.A. Agbaya7,2, Tsion Bizuneh8,2, Tara Kerin1, George Armah2,9, A. Duncan Steele2,10, Roger I. Glass11, Jon R. Gentsch1
1Gastroenteritis and Respiratory Viruses Laboratory Branch, Division of Viral Diseases, NCIRD, CDC, Atlanta, Georgia
2Members of the African Rotavirus Network.
3MRC/DPRU, University of Limpopo, Pretoria campus, South Africa
4Viral Gastroenteritis Unit, National Institute for Communicable Disease, Sandringham, South Africa
5Laboratory of Bacteriology-Virology, University Hospital Sahloul, Sousse, Tunisia
6Department of Microbiology, Ahmadu Bello University, Zaria, Nigeria
7Laboratoire de Bacteriologie/Virologie, Institut Pasteur de Cote-d'Ivoire/DVE, Abidjan, Cote-d'Ivoire
8Ethiopian Institute of Virology, Addis Ababa, Ethiopia
9Noguchi Memorial Research Institute Accra, Ghana
10PATH, NW, Seattle, Washington
11Fogarty International Center, National Institutes of Health, Bethesda, Maryland

Tóm tắt

Abstract

Global rotavirus surveillance has led to the detection of many unusual human rotavirus (HRV) genotypes. During 1996–2004 surveillance within the African Rotavirus Network (ARN), six P[8],G8 and two P[6],G8 human rotavirus strains were identified. Gene fragments (RT‐PCR amplicons) of all 11‐gene segments of these G8 strains were sequenced in order to elucidate their genetic and evolutionary relationships. Phylogenetic and sequence analyses of each gene segment revealed high similarities (88–100% nt and 91–100% aa) for all segments except for gene 4 encoding VP4 proteins P[8] and P[6]. For most strains, almost all of the genes of the ARN strains other than neutralizing antigens are related to typical human strains of Wa genogroup. The VP7, NSP2, and NSP5 genes were closely related to cognate genes of animal strains (83–99% and 97–99% aa identity). This study suggests that the ARN G8 strains might have arisen through VP7 or VP4 gene reassortment events since most of the other gene segments resemble those of common human rotaviruses. However, VP7, NSP2 (likely), and NSP5 (likely) genes are derived potentially from animals consistent with a zoonotic introduction. Although these findings help elucidate rotavirus evolution, sequence studies of cognate animal rotavirus genes are needed to conclusively determine the specific origin of those genes relative to both human and animal rotavirus strains. J. Med. Virol. 81:937–951, 2009. © 2009 Wiley‐Liss, Inc.

Từ khóa


Tài liệu tham khảo

10.1128/JCM.39.11.3969-3975.2001

10.1099/jmm.0.46787-0

10.1002/1096-9071(200101)63:1<67::AID-JMV1010>3.0.CO;2-T

Beards G, 1995, Temporal distribution of rotavirus G‐serotypes in the West Midlands region of the United Kingdom, 1983–1994, J Diarrhoeal Dis Res, 13, 235

10.1128/JCM.39.3.1085-1091.2001

Boom R, 1990, Rapid and simple method for purification of nucleic‐acids, J Clin Microbiol, 28, 495, 10.1128/jcm.28.3.495-503.1990

10.1007/BF01309632

10.1007/s007050050666

10.1007/s007050050029

Coulson BS, 1987, Simple and specific enzyme‐immunoassay using monoclonal‐antibodies for serotyping human rotaviruses, J Clin Microbiol, 25, 509, 10.1128/jcm.25.3.509-515.1987

10.1002/(SICI)1096-9071(199709)53:1<41::AID-JMV8>3.0.CO;2-Q

10.1002/(SICI)1096-9071(199903)57:3<308::AID-JMV15>3.0.CO;2-B

10.1006/viro.2000.0456

Das BK, 1994, Characterization of rotavirus strains from newborns in New‐Delhi, India, J Clin Microbiol, 32, 1820, 10.1128/jcm.32.7.1820-1822.1994

10.1093/nar/12.1Part1.387

10.1006/viro.1994.1471

10.3201/eid1501.080899

Estes M, 2007, Fields virology, 1917

Fischer TK, 2000, Genotype profiles of rotavirus strains from children in a suburban community in Guinea‐Bissau, Western Africa, J Clin Microbiol, 38, 264, 10.1128/JCM.38.1.264-267.2000

10.1016/S0042-6822(03)00153-3

Flores J, 1982, Genetic relatedness among human rotaviruses as determined by RNA hybridization, Infect Immun, 37, 648, 10.1128/iai.37.2.648-655.1982

10.1016/S0378-1135(99)00021-8

10.1292/jvms.66.1413

Gentsch JR, 1992, Identification of group‐A rotavirus gene‐4 types by polymerase chain‐reaction, J Clin Microbiol, 30, 1365, 10.1128/jcm.30.6.1365-1373.1992

10.1086/431499

10.1007/BF01348983

10.1006/viro.1994.1163

10.1007/s00705-006-0848-2

10.1099/0022-1317-69-7-1659

Gouvea V, 1990, Polymerase chain‐reaction amplification and typing of rotavirus nucleic‐acid from stool specimens, J Clin Microbiol, 28, 276, 10.1128/jcm.28.2.276-282.1990

Greenberg H, 1983, Serological analysis of the subgroup protein of rotavirus, using monoclonal‐antibodies, Infect Immun, 39, 91, 10.1128/iai.39.1.91-99.1983

Herring AJ, 1982, Rapid diagnosis of rotavirus infection by direct detection of viral nucleic‐acid in silver‐stained polyacrylamide gels, J Clin Microbiol, 16, 473, 10.1128/jcm.16.3.473-477.1982

10.1007/s007050050594

10.1099/0022-1317-78-9-2341

Hoshino Y, 1988, Infection immunity of piglets to either VP3 or VP7 outer capsid protein confers resistance to challenge with a virulent rotavirus bearing the corresponding antigen, J Virol, 62, 744, 10.1128/jvi.62.3.744-748.1988

10.1128/JVI.75.8.3696-3705.2001

10.1016/S0166-0934(02)00087-3

10.1128/JCM.41.8.3566-3573.2003

10.1007/s007050070094

10.1002/jmv.2197

10.1007/s11262-007-0119-7

10.1016/j.virol.2006.12.004

10.1007/BF01731581

10.1006/viro.1997.8727

10.1007/BF01718584

10.1023/A:1024451314534

10.1006/viro.1994.1519

10.1016/j.virol.2005.11.001

10.1128/JCM.02262-06

10.1111/j.1574-6968.2001.tb10634.x

Matsui SM, 1990, Sequence‐analysis of gene‐11 equivalents from short and super short strains of rotavirus, J Virol, 64, 120, 10.1128/jvi.64.1.120-124.1990

10.1128/JVI.54.2.623-624.1985

10.1128/JVI.80.8.3801-3810.2006

10.1128/JCM.44.5.1801-1809.2006

10.1128/JVI.02257-07

10.1007/s00705-008-0155-1

10.1099/0022-1317-79-2-321

10.1128/JVI.76.23.11793-11800.2002

10.1128/JVI.76.11.5829-5834.2002

10.1016/0923-2516(96)80902-2

10.1128/JVI.63.3.1431-1434.1989

10.1111/j.1348-0421.1993.tb03220.x

Nakagomi O, 1996, Molecular epidemiology of human rotaviruses: Genogrouping by RNA‐RNA hybridisation, Arch Virol, 12, 93

10.1007/s007050070029

10.1016/S0034-5288(02)00097-8

Nakagomi O, 1990, Molecular‐identification by RNA‐RNA hybridization of a human rotavirus that is closely related to rotaviruses of feline and canine origin, J Clin Microbiol, 28, 1198, 10.1128/jcm.28.6.1198-1203.1990

10.1002/(SICI)1096-9071(199907)58:3<296::AID-JMV17>3.0.CO;2-5

10.1016/S0378-1135(01)00445-X

Padilla‐Noriega L, 1993, Serologic analysis of human rotavirus serotypes p1a and p2 by using monoclonal‐antibodies, J Clin Microbiol, 31, 622, 10.1128/jcm.31.3.622-628.1993

Page RDM, 1996, TreeView: An application to display phylogenetic trees on personal computers, Comput Appl Biosci, 12, 357

10.1099/0022-1317-77-6-1223

Palombo EA, 2000, Emergence of serotype G9 human rotaviruses in Australia, J Clin Microbiol, 38, 1305, 10.1128/JCM.38.3.1305-1306.2000

10.3201/eid1202.050006

10.1016/0042-6822(91)90691-4

10.1128/JCM.43.7.3208-3212.2005

10.1128/JVI.01622-06

10.1128/JCM.36.11.3223-3229.1998

10.1146/annurev.micro.51.1.225

10.1016/S0065-3527(08)60795-2

10.1006/viro.1995.1087

10.1002/rmv.448

Santos N, 1998, Detection of rotavirus types G8 and G10 among Brazilian children with diarrhea, J Clin Microbiol, 36, 2727, 10.1128/JCM.36.9.2727-2729.1998

10.1002/jmv.20672

10.1099/0022-1317-80-11-3029

10.1016/j.virol.2006.10.001

10.1093/oxfordjournals.molbev.a025664

10.1007/s11262-005-0049-1

10.1029/96PA03934

10.1093/infdis/155.6.1159

10.1007/s00705-003-0199-1

10.1007/s11262-005-6908-y

10.1128/JVI.64.7.3219-3225.1990

Wyatt RG, 1983, Direct isolation in cell‐culture of human rotaviruses and their characterization into 4 serotypes, J Clin Microbiol, 18, 310, 10.1128/jcm.18.2.310-317.1983