Genomic amplification of BCR/ABL1 and a region downstream of ABL1 in chronic myeloid leukaemia: a FISH mapping study of CML patients and cell lines
Tóm tắt
Chronic myeloid leukaemia (CML) is characterized by the expression of the BCR/ABL1 fusion gene, a constitutively activated tyrosine kinase that commonly results from the formation of the Philadelphia (Ph) chromosome after a t(9;22)(q34;q11) or variant rearrangement. The duplication of the Ph chromosome is a recurring abnormality acquired during disease progression, whereas intrachromosomal amplification of BCR/ABL1 is a rare phenomenon and has been associated with imatinib therapy resistance. Archival bone marrow chromosome suspensions from 19 CML patients known to carry more than 1 copy of BCR/ABL1 and 10 CML cell lines were analyzed by fluorescent in situ hybridization with a panel of probes from 9q34.1-qter to investigate whether they carried two identical copies of the Ph chromosome or, instead, one or both Ph contained cryptic imbalances of some regions. A duplication of the entire Ph chromosome with no further events involving the derivative 22 was found in 12 patients. In contrast, a sideline with either 1 or 2 isochromosomes of the Ph chromosome was identified in 6 patients but none of the cell lines. In one of the patients a translocation between the distal end of one arm of the isoderivative chromosome 22 and a third chromosome was revealed. 2 patients were found to carry marker structures harbouring high copy number gains of BCR/ABL1 fusion along with a variable part of 9q34 region downstream of ABL1 breakpoint, similarly to the markers present in the imatinib resistant cell line K562. We identified the following regions of amplification: 9q34.1 → q34.2 and 9q34.1 → qter, with a common minimum amplified region of 682 Kb. One of the patients had 5 BCR/ABL1 positive clones with variable level of 9q34 amplifications on a variety of structures, from an isoderivative 22 to tandem duplications. These data confirm that the intrachromosomal genomic amplification of BCR/ABL1 that occurs in some CML patients during disease progression also involves amplification of 9q34 gene-rich sequences downstream of ABL1 breakpoint. The variety of rearrangements identified in this relatively small cohort demonstrates that the Ph chromosome is not a stable structure but prone to further rearrangements during disease progression.
Tài liệu tham khảo
Melo JV, Barnes DJ: Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nature reviews 2007, 7: 441–453. 10.1038/nrc2147
Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL: Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science (New York, NY) 2001, 293: 876–880.
Hochhaus A, Kreil S, Corbin AS, La Rosee P, Muller MC, Lahaye T, Hanfstein B, Schoch C, Cross NC, Berger U, Gschaidmeier H, Druker BJ, Hehlmann R: Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 2002, 16: 2190–2196. 10.1038/sj.leu.2402741
Quintas-Cardama A, Cortes J: Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood 2009, 113: 1619–1630. 10.1182/blood-2008-03-144790
Szych CM, Liesveld JL, Iqbal MA, Li L, Siebert S, Asmus C, O'Malley J, Lee A, Wang N: Isodicentric Philadelphia chromosomes in imatinib mesylate (Gleevec)-resistant patients. Cancer genetics and cytogenetics 2007, 174: 132–137. 10.1016/j.cancergencyto.2006.12.001
Campbell LJ, Patsouris C, Rayeroux KC, Somana K, Januszewicz EH, Szer J: BCR/ABL amplification in chronic myelocytic leukemia blast crisis following imatinib mesylate administration. Cancer genetics and cytogenetics 2002, 139: 30–33. 10.1016/S0165-4608(02)00615-5
Gargallo PM, Cuello MT, Aranguren PN, Larripa IB: Amplification of the BCR/ABL fusion gene clustered on a masked Philadelphia chromosome in a patient with myeloblastic crisis of chronic myelocytic leukemia. Cancer genetics and cytogenetics 2003, 143: 140–144. 10.1016/S0165-4608(02)00854-3
Phan CL, Megat Baharuddin PJ, Chin LP, Zakaria Z, Yegappan S, Sathar J, Tan SM, Purushothaman V, Chang KM: Amplification of BCR-ABL and t(3;21) in a patient with blast crisis of chronic myelogenous leukemia. Cancer genetics and cytogenetics 2008, 180: 60–64. 10.1016/j.cancergencyto.2007.09.014
Brazma D, Grace C, Howard J, Melo JV, Holyoke T, Apperley JF, Nacheva EP: Genomic profile of chronic myelogenous leukemia: Imbalances associated with disease progression. Genes, chromosomes & cancer 2007, 46: 1039–1050.
Gribble SM, Roberts I, Grace C, Andrews KM, Green AR, Nacheva EP: Cytogenetics of the chronic myeloid leukemia-derived cell line K562: karyotype clarification by multicolor fluorescence in situ hybridization, comparative genomic hybridization, and locus-specific fluorescence in situ hybridization. Cancer genetics and cytogenetics 2000, 118: 1–8. 10.1016/S0165-4608(99)00169-7
Pernice F, Squadrito G, Saitta A, Mazza G, Musolino C: Isodicentric Philadelphia chromosome in accelerated phase of chronic myeloid leukemia. Cancer genetics and cytogenetics 1993, 66: 113–116. 10.1016/0165-4608(93)90238-H
Metzke-Heidemann S, Harder L, Gesk S, Schoch R, Jenisch S, Grote W, Siebert R, Schlegelberger B: Integration of amplified BCR/ABL fusion genes into the short arm of chromosome 17 as a novel mechanism of disease progression in chronic myeloid leukemia. Genes, chromosomes & cancer 2001, 31: 10–14.
Virgili A, Brazma D, Reid AG, Howard-Reeves J, Valganon M, Chanalaris A, De Melo VA, Marin D, Apperley JF, Grace C, Nacheva EP: FISH mapping of Philadelphia negative BCR/ABL1 positive CML. Molecular Cytogenetics 2008, 1: 14. 10.1186/1755-8166-1-14
Li Ming Chua C, Tan YY, Chua SP, Ma HB, Koay E, Li Min Poon M, Liu TC, Gole L: Multiple copies of a rare rearrangement of Philadelphia chromosome in a chronic myeloid leukemia patient: a case report. Cancer genetics and cytogenetics 2010, 199: 66–68. 10.1016/j.cancergencyto.2010.01.012
Sirulink A, Silver RT, Najfeld V: Marked ploidy and BCR-ABL gene amplification in vivo in a patient treated with STI571. Leukemia 2001, 15: 1795–1797.
Gadzicki D, von Neuhoff N, Steinemann D, Just M, Busche G, Kreipe H, Wilkens L, Schlegelberger B: BCR-ABL gene amplification and overexpression in a patient with chronic myeloid leukemia treated with imatinib. Cancer genetics and cytogenetics 2005, 159: 164–167. 10.1016/j.cancergencyto.2004.09.021
Morel F, Bris MJ, Herry A, Calvez GL, Marion V, Abgrall JF, Berthou C, Braekeleer MD: Double minutes containing amplified bcr-abl fusion gene in a case of chronic myeloid leukemia treated by imatinib. European journal of haematology 2003, 70: 235–239. 10.1034/j.1600-0609.2003.00046.x