Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements

Aging Cell - Tập 12 Số 2 - Trang 247-256 - 2013
Marco De Cecco1, Steven W. Criscione2, Edward Peckham2, Sara Hillenmeyer2, Eliza A. Hamm2, Jayameenakshi Manivannan2, Adam Peterson2, Jill A. Kreiling2, Nicola Neretti2, John M. Sedivy2
1Department of Molecular Biology, Cell Biology and Biochemistry, Center for Genomics and Proteomics, Brown University, Providence, RI 02912, USA.
2Department of Molecular Biology, Cell Biology and Biochemistry, Center for Genomics and Proteomics Brown University Providence 02912 RI USA

Tóm tắt

Summary

Replicative cellular senescence is an important tumor suppression mechanism and also contributes to aging. Progression of both cancer and aging include significant epigenetic components, but the chromatin changes that take place during cellular senescence are not known. We used formaldehyde assisted isolation of regulatory elements (FAIRE) to map genome‐wide chromatin conformations. In contrast to growing cells, whose genomes are rich with features of both open and closed chromatin, FAIRE profiles of senescent cells are significantly smoothened. This is due to FAIRE signal loss in promoters and enhancers of active genes, and FAIRE signal gain in heterochromatic gene‐poor regions. Chromatin of major retrotransposon classes, Alu, SVA and L1, becomes relatively more open in senescent cells, affecting most strongly the evolutionarily recent elements, and leads to an increase in their transcription and ultimately transposition. Constitutive heterochromatin in centromeric and peri‐centromeric regions also becomes relatively more open, and the transcription of satellite sequences increases. The peripheral heterochromatic compartment (PHC) becomes less prominent, and centromere structure becomes notably enlarged. These epigenetic changes progress slowly after the onset of senescence, with some, such as mobilization of retrotransposable elements becoming prominent only at late times. Many of these changes have also been noted in cancer cells.

Từ khóa


Tài liệu tham khảo

10.1038/nature10600

10.1038/nrg798

10.1016/j.semcancer.2010.06.001

10.1038/ng.969

Bowman AW, 1997, Applied Smoothing Techniques for Data Analysis, 10.1093/oso/9780198523963.001.0001

10.1126/science.277.5327.831

Carone DM, 2012, Heterochromatin instability in cancer: from the barr body to satellites and the nuclear periphery, Semin. Cancer Biol., ???

10.1016/j.cell.2007.07.003

10.1038/nature08248

10.1186/gb-2010-11-6-r69

10.1016/j.semcancer.2011.09.003

10.1101/gr.282402

10.1159/000106440

10.1038/nature09906

10.1091/mbc.e11-10-0884

10.1016/j.ymeth.2009.03.003

10.1101/gr.5533506

10.1038/ng1259

10.1073/pnas.0912402107

10.1038/ng.865

10.1016/0014-4827(61)90192-6

10.1093/nar/gkq1226

10.1038/nature07829

10.1016/S1097-2765(04)00256-4

10.1371/journal.pgen.0020158

10.1007/978-1-59745-361-5_3

10.1083/jcb.200306104

10.1186/gb-2009-10-3-r25

10.1126/science.1222077

10.1016/S0378-1119(99)00384-4

10.1016/j.cmet.2012.07.017

10.1016/S0092-8674(03)00401-X

10.1016/j.cell.2008.10.025

10.1159/000337116

10.1083/jcb.201009094

10.1016/j.yexcr.2008.02.023

10.1016/j.tig.2010.03.006

10.1128/MCB.01888-06

Smyth GK, 2005, Limma: Linear Models for Microarray Data

10.1016/S0531-5565(02)00061-X

10.1091/mbc.e04-12-1078

10.1126/science.1074973

10.1016/j.gene.2008.04.013

10.4161/cc.10.17.17543

10.1126/science.6844925

10.1089/cmb.2005.12.882

10.1074/jbc.M301685200

10.1371/journal.pone.0017666

10.1016/j.devcel.2004.10.019

10.1016/j.lfs.2008.07.015