Genome-wide identification of resistance genes and cellular analysis of key gene knockout strain under 5-hydroxymethylfurfural stress in Saccharomyces cerevisiae

BMC Microbiology - Tập 23 - Trang 1-12 - 2023
Qian Li1,2, Peng Feng1,3, Hao Tang4, Fujia Lu1, Borui Mou1, Lan Zhao5, Nan Li1, Yaojun Yang1,3, Chun Fu1,3, Wencong Long1,3, Ximeng Xiao1,3, Chaohao Li6, Wei Wu6, Gang Wang1,7, Beidong Liu8,9, Tianle Tang10, Menggen Ma2, Hanyu Wang1,3
1College of Life Science, Leshan Normal University, Leshan, China
2Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, People’s Republic of China
3Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, China
4Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, China
5Jiangxi Forestry Science and Technology Promotion and Publicity Education Center, Nanchang, China
6Leshan Institute of Product Quality Supervision and Testing, Leshan, China
7Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China
8Department of Chemistry and Molecular Biology, University of Gothenburg, Göteburg, Sweden
9State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
10Key Laboratory of Tropical Transitional Medicine of Ministry of Education, Hainan Medical University, Haikou, China

Tóm tắt

In bioethanol production, the main by-product, 5-hydroxymethylfurfural (HMF), significantly hinders microbial fermentation. Therefore, it is crucial to explore genes related to HMF tolerance in Saccharomyces cerevisiae for enhancing the tolerance of ethanol fermentation strains. A comprehensive analysis was conducted using genome-wide deletion library scanning and SGAtools, resulting in the identification of 294 genes associated with HMF tolerance in S. cerevisiae. Further KEGG and GO enrichment analysis revealed the involvement of genes OCA1 and SIW14 in the protein phosphorylation pathway, underscoring their role in HMF tolerance. Spot test validation and subcellular structure observation demonstrated that, following a 3-h treatment with 60 mM HMF, the SIW14 gene knockout strain exhibited a 12.68% increase in cells with abnormal endoplasmic reticulum (ER) and a 22.41% increase in the accumulation of reactive oxygen species compared to the BY4741 strain. These findings indicate that the SIW14 gene contributes to the protection of the ER structure within the cell and facilitates the clearance of reactive oxygen species, thereby confirming its significance as a key gene for HMF tolerance in S. cerevisiae.

Tài liệu tham khảo

Vohra M, Manwar J, Manmode R, Padgilwar S, Patil S. Bioethanol production: feedstock and current technologies. J Environ Chem Eng. 2014;1(2):573–84. https://doi.org/10.1016/j.jece.2013.10.013. Zabed H, Faruq G, Sahu JN, Azirun MS, Hashim R, Amru NB. Bioethanol production from fermentable sugar juice. The Scientific World Joournal. 2014, 957. https://doi.org/10.1155/2014/957102 Hu J, Lin Y, Zhang Z, Xiang T, Mei Y, Zhao S, Liang Y, Peng N. High-titer lactic acid production by Lactobacillus pentosus FL0421 from corn stover using fed-batch simultaneous saccharification and fermentation. Biores Technol. 2016;214:74–80. https://doi.org/10.1016/j.biortech.2016.04.034. Joe MH, Kim JY, Lim S, Kim DH, Bai S, Park H, Lee SG, Han SJ, Choi J. Microalgal lipid production using the hydrolysates of rice straw pretreated with gamma irradiation and alkali solution. Biotechnol Biofuels. 2015;8:125. https://doi.org/10.1186/s13068-015-0308-x. Reifenrath M, Boles E. Engineering of hydroxymandelate synthases and the aromatic amino acid pathway enables de novo biosynthesis of mandelic and 4-hydroxymandelic acid with Saccharomyces cerevisiae. Metab Eng. 2018;45:246–54. https://doi.org/10.1016/j.ymben.2018.01.001. Magnus A, Maurizio B, Valeria M, Lisbeth O. The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae. Biotechnol Biofuels. 2013;6:22–4. https://doi.org/10.1186/1754-6834-6-22. Taherzadeh MJ, Gustafsson L, Niklasson C, Lidén G. Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. J Biosci Bioeng. 1999;87(2):169–74. https://doi.org/10.1016/s1389-1723(99)89007-0. Allen SA, Clark W, McCaffery MJ, Cai Z, Lanctot A, Slininger PJ, Liu ZL, Gorsoch SW. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels. 2010;3:2–8. https://doi.org/10.1186/1754-6834-3-2. Becerra ML, Lizarazo LM, Rojas HA, Prieto GA, Martinez JJ. Biotransformation of 5-hydroxymethylfurfural and furfural with bacteria of bacillus genus. Biocatal Agric Biotechnol. 2022;39:102281. https://doi.org/10.1016/j.bcab.2022.102281. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ. Life with 6000 genes. Science. 1996;274(5287):563–7. https://doi.org/10.1126/science.274.5287.546. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, Dow S, Lucau-Danila A, Anderson K, André B, Arkin AP. Functional profiling of the Saccharomyces cerevisiae genome. Nature. 2002;418:387–91. https://doi.org/10.1038/nature00935. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM. Functional characterization of the Saccharomyces cerevisiae genome by gene deletion and parallel analysis. Science. 1999;285:901–6. https://doi.org/10.1126/science.285.5429.901. Nawaz-ul-Rehman MS, Prasanth KR, Baker J, Nagy PD. Yeast screens for host factors in positive-strand RNA virus replication based on a library of temperature-sensitive mutants. Methods. 2013;59:207–16. https://doi.org/10.1016/j.ymeth.2012.11.001. Douglas AC, Smith AM, Sharifpoor S, Yan Z, Durbic T, Heisler LE, Lee AY, Ryan O, Göttert H, Surendra A, vanDyk, D. Functional analysis with a barcoder yeast gene overexpression system. G3 Genesgenetics. 2012;2:1279–1289. https://doi.org/10.1534/g3.112.003400 Tkach JM, Yimit A, Lee AY, Riffle M, Costanzo M, Jaschob D, Hendry JA, Ou J, Moffat J, Boone C, Davis TN. Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol. 2012;14(9):966–76. https://doi.org/10.1038/ncb2549. Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2006;71(3):339–49. https://doi.org/10.1007/s00253-005-0142-3. Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Pagé N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H, Andrews B. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science. 2001;294(5550):2364–8. https://doi.org/10.1126/science.1065810. Hill SM, Hao X, Liu B, Nyström T. Life-span extension by a metacaspase in the yeast Saccharomyces cerevisiae. Science. 2014;344:1389–92. https://doi.org/10.1126/science.1252634. Hanzén S, Vielfort K, Yang J, Roger F, Andersson V, Zamarbide-Forés S, Andersson R, Malm L, Palais G, Biteau B, Liu B, Michel BT, Mikael M, Thomas N. Lifespan control by redox-dependent recruitment of chaperones to misfolded proteins. Cell. 2016;166(1):140–51. https://doi.org/10.1016/j.cell.2016.05.006. Cao X, An T, Fu W, Zhang J, Zhao H, Li D, Jin X, Liu B. Genome-wide identification of cellular pathways and key genes that respond to sodium bicarbonate stress in Saccharomyces cerevisiae. Front Microbiol. 2022;13:831973. https://doi.org/10.3389/fmicb.2022.831973. Wagih O, Usaj M, Baryshnikova A, VanderSluis B, Kuzmin E, Costanzo M, Myers CL, Andrews BJ, Boone CM, Parts L. SGAtools: one-stop analysis and visualization of array-based genetic interaction screens. Nucleic Acids Res. 2013;41:W591–6. https://doi.org/10.1093/nar/gkt400. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. https://doi.org/10.1101/gr.1239303. Madeo F, Fröhlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Fröhlich KU. Oxygen stress: A regulator of apoptosis in yeast. J Cell Biol. 1999;145(4):757–67. https://doi.org/10.1083/jcb.145.4.757. Wang HY, Li Q, Zhang ZY, Kuang XL, Hu XD, Ayepa E, Han XB, Abrha GT. Cellular Analysis and Comparative Transcriptomics Reveal the Tolerance Mechanisms of Candida tropicalis Toward Phenol. Front Microbiol. 2020;11:544. https://doi.org/10.3389//fmicb.2020.00544. Ellen SA, Clark W, McCaffery JM, Cai Z, Lanctot A, Slininger PJ, Liu ZL, Gorsich SW. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels. 2010;3:2. https://doi.org/10.1186/1754-6834-3-2. Ma MG, Liu ZL. Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae. BMC Genomics. 2010;11:660. https://doi.org/10.1186/1471-2164-11-660. Wang HC, Gu CF, Rolfes RJ, Jessen HJ, Shears SB. Structural and biochemical characterization of Siw14: A protein-tyrosine phosphatase fold that metabolizes inositol pyrophosphates. J Biol Chem. 2018;293(18):6905–14. https://doi.org/10.1074/jbc.RA117.001670. Gu CF, Nguyen HN, Douglas G, Chen ZW, Jessen HJ, Gu Z, Wang HC, Shears SB. KO of 5-InsP7 kinase activity transforms the HCT116 colon cancer cell line into a hypermetabolic, growth-inhibited phenotype. Proc Natl Acad Sci USA. 2017;114:11968–73. https://doi.org/10.1073/pnas.1702370114. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol. 2004;287(4):C817–833. https://doi.org/10.1152/ajpcell.00139.2004. Perrone GG, Tan SX, Dawes IW. Reactive oxygen species and yeast apoptosis. Biochim Biophys Acta. 2008;1783(7):1354–68. https://doi.org/10.1016/j.bbamcr.2008.01.023. Senft D, Ronai Z. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci. 2015;40(3):141–8. https://doi.org/10.1016/j.tibs.2015.01.002.