Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Xác định toàn bộ genome của các RNA liên quan đến ung thư có polyadenyl hóa và không có polyadenyl hóa trong các dòng tế bào vú và phổi của người
Tóm tắt
mRNAs eukaryote bao gồm hai dạng bản sao: poly(A)+ và poly(A)−, dựa trên sự hiện diện hoặc vắng mặt của đuôi poly(A) ở đầu 3′. mRNAs poly(A)+ chủ yếu là mRNAs mã hóa protein, trong khi đó, chức năng của mRNA poly(A)− vẫn phần lớn chưa được biết đến. Các nghiên cứu trước đây đã chỉ ra rằng một tỷ lệ đáng kể các bản sao gen là poly(A)− hoặc bimorphic (chứa cả bản sao poly(A)+ và poly(A)−). Chúng tôi đã so sánh mức độ biểu hiện của RNA mRNAs poly(A)− và poly(A)+ trong các dòng tế bào bình thường và ung thư. Chúng tôi cũng đã điều tra chức năng tiềm năng của các bản sao RNA này bằng cách sử dụng một quy trình tích hợp để khám phá các trình tự transcriptome poly(A)+ và poly(A)− giữa một dòng tế bào tuyến vú người bình thường (HMEC) và một dòng tế bào ung thư vú (MCF-7), cũng như giữa một dòng tế bào phổi người bình thường (NHLF) và một dòng tế bào ung thư phổi (A549). Dữ liệu cho thấy rằng các dòng tế bào bình thường và ung thư thể hiện hai dạng mRNA này một cách khác biệt. Phân tích chú thích gene ontology (GO) đã gợi ý về chức năng của hai nhóm bản sao này và nhóm các gen biểu hiện khác biệt theo hình thức bản sao của chúng. Dữ liệu cho thấy rằng các chức năng liên quan đến chu cycle tế bào, apoptosis và chết tế bào tương ứng với hầu hết các gen biểu hiện khác biệt trong hai dạng bản sao này, điều này cũng được liên kết với các bệnh ung thư. Hơn nữa, chức năng kéo dài dịch mã và dịch mã cũng được tìm thấy cho các gen mã hóa protein poly(A)− trong các dòng tế bào ung thư. Chúng tôi chứng minh rằng các bản sao poly(A)− đóng một vai trò quan trọng trong sự phát triển của ung thư.
Từ khóa
#RNA #polyadenyl hóa #ung thư #biểu hiện gen #mRNAsTài liệu tham khảo
Wu Q, Kim Y C, Lu J, et al. Poly A-transcripts expressed in HeLa cells. PLoS ONE, 2008, 3: e2803
Cheng J, Kapranov P, Drenkow J, et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science, 2005, 308: 1149–1154
Katinakis P, Slater A, Burdon R. Non-polyadenylated mRNAs from eukaryotes. FEBS Lett, 1980, 116: 1–7
Moore M J, Proudfoot N J. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell, 2009, 136: 688–700
Grummt I. Regulation of mammalian ribosomal gene transcription by RNA polymerase I. Prog Nucleic Acid Res Mol Biol, 1998, 62: 109–154
Detke S, Stein J L, Stein G S. Synthesis of histone messenger RNAs by RNA polymerase II in nuclei from S phase HeLa S3 cells. Nucleic Acids Res, 1978, 5: 1515–1528
Willis I M. RNA polymerase III. Genes, factors and transcriptional specificity. Eur J Biochem, 1993, 212: 1–11
Sunwoo H, Dinger M E, Wilusz J E, et al. MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res, 2009, 19: 347–359
Wang E T, Sandberg R, Luo S, et al. Alternative isoform regulation in human tissue transcriptomes. Nature, 2008, 456: 470–476
Li J B, Levanon E Y, Yoon J K, et al. Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science, 2009, 324: 1210–1213
Yang L, Duff M O, Graveley B R, et al. Genomewide characterization of non-polyadenylated RNAs. Genome Biol, 2011, 12: R16
Cheng J, Kapranov P, Drenkow J, et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science, 2005, 308: 1149–1154
Rosenbloom K R, Dreszer T R, Long J C, et al. ENCODE wholegenome data in the UCSC Genome Browser: update 2012. Nucleic Acids Res, 2012, 40: D912–D917
Trapnell C, Pachter L, Salzberg S L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 2009, 25: 1105–1111
Langmead B, Trapnell C, Pop M, et al. Ultrafast and memoryefficient alignment of short DNA sequences to the human genome. Genome Biol, 2009, 10: R25
Trapnell C, Williams B A, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnol, 2010, 28: 511–515
Garber M, Grabherr M G, Guttman M, et al. Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Meth, 2011, 8: 469–477
Cabili M N, Trapnell C, Goff L, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev, 2011, 25: 1915–1927
Hanahan D, Weinberg R A. Hallmarks of cancer: the next generation. Cell, 2011, 144: 646–674
Hoeijmakers J HJ. DNA damage, aging, and cancer. N Engl J Med, 2009, 361: 1475–1485
Gong X, Wu R H, Wang H W, et al. Evaluating the consistency of differential expression of microRNA detected in human cancers. Mol Cancer Ther, 2011, 10: 752–760
Jackson S P, Bartek J. The DNA-damage response in human biology and disease. Nature, 2009, 461: 1071–1078
Massagué J. G1 cell-cycle control and cancer. Nature, 2004, 432: 298–306
Evan G I, Vousden K H. Proliferation, cell cycle and apoptosis in cancer. Nature, 2001, 411: 342–348
Wang L S, Xiong Y Y, Sun Y H, et al. HLungDB: an integrated database of human lung cancer research. Nucleic Acids Res, 2010, 38: D665–D669
Landi M T, Dracheva T, Rotunno M, et al. Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival. PLoS ONE, 2008, 3: e1651
Rohrbeck A, Neukirchen J, Rosskopf M, et al. Gene expression profiling for molecular distinction and characterization of laser captured primary lung cancers. J Transl Med, 2008, 6: 69
Wrage M, Ruosaari S, Eijk P P, et al. Genomic profiles associated with early micrometastasis in lung cancer: relevance of 4q deletion. Clin Cancer Res, 2009, 15: 1566–1574
Barnhart B C, Lam J C, Young R M, et al. Effects of 4E-BP1 expression on hypoxic cell cycle inhibition and tumor cell proliferation and survival. Cancer Biol Ther, 2008, 7: 1441–1449
She Q B, Halilovic E, Ye Q, et al. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell, 2010, 18: 39–51
Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol, 2007, 35: 495–516
Zamai L, Ponti C, Mirandola P, et al. NK cells and cancer. J Immunol, 2007, 178: 4011–4016
Park M T, Lee S J. Cell cycle and cancer. J Biochem Mol Biol, 2003, 36: 60–65
Schadt E E, Linderman M D, Sorenson J, et al. Computational solutions to large-scale data management and analysis. Nat Rev Genet, 2010, 11: 647–657
Yang J, Yang F, Ren L, et al. Unbiased parallel detection of viral pathogens in clinical samples by use of a metagenomic approach. J Clin Microbiol, 2011, 49: 3463–3469
Sun L, Luo H, Liao Q, et al. Systematic study of human long intergenic non-coding RNAs and their impact on cancer. Sci China Life Sci, 2013, 56: 324–334
Yu W, Gius D, Onyango P, et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature, 2008, 451: 202–206
Huarte M, Guttman M, Feldser D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell, 2010, 142: 409–419
Esteller M. Non-coding RNAs in human disease. Nat Rev Genet, 2011, 12: 861–874
Prensner J R, Iyer M K, Balbin O A, et al. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol, 2011, 29: 742–749
Bu D C, Yu K T, Sun S, et al. NONCODE v3.0: integrative annotation of long noncoding RNAs. Nucleic Acids Res, 2012, 40: D210–D215
Guo X L, Gao L, Liao Q, et al. Long non-coding RNAs function annotation: a global prediction method based on bi-colored networks. Nucleic Acids Res, 2013, 41: e35
Liao Q, Xiao H, Bu D C, et al. ncFANs: a web server for functional annotation of long non-coding RNAs. Nucleic Acids Res, 2011, 39: W118–W124
Liao Q, Liu C N, Yuan X Y, et al. Large-scale prediction of long non-coding RNA functions in a coding-non-coding gene co-expression network. Nucleic Acids Res, 2011, 39: 3864–3878