Xác định trên toàn bộ hệ gen các gen của Saccharomyces cerevisiae cần thiết cho khả năng chịu đựng axit axetic
Tóm tắt
Từ khóa
#axit axetic #Saccharomyces cerevisiae #khả năng chịu đựng #kỹ thuật di truyền #EUROSCARFTài liệu tham khảo
Gancedo JM, Gancedo C: Catabolite repression mutants of yeast. FEMS Microbiol Rev. 1986, 32: 179-187.
Graves T, Narendranath N, Dawson K, Power R: Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash. J Ind Microbiol Biotechnol. 2006, 33 (6): 469-474. 10.1007/s10295-006-0091-6.
Rasmussen JE, Schultz E, Snyder RE, Jones RS, Smith CR: Acetic-Acid as a Causative Agent in Producing Stuck Fermentations. Am J Enol Viticult. 1995, 46 (2): 278-280.
Garay-Arroyo A, Covarrubias AA, Clark I, Nino I, Gosset G, Martinez A: Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol. 2004, 63 (6): 734-741. 10.1007/s00253-003-1414-4.
Radler F: Yeasts-Metabolism of organic acids. Wine Microbiology and Biotechnology. 1993, 165-179. Harwood Academic Publishers,
van Maris AJ, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MA, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT: Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek. 2006, 90 (4): 391-418. 10.1007/s10482-006-9085-7.
Palmqvist E, Hahn-Hägerdal B: Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol. 2000, 74 (1): 17-24. 10.1016/S0960-8524(99)00160-1.
Almeida JR, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF: Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol. 2007, 82 (4): 340-349. 10.1002/jctb.1676.
Casey E, Sedlak M, Ho NW, Mosier NS: Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. FEMS Yeast Res. 2010, 10 (4): 385-393. 10.1111/j.1567-1364.2010.00623.x.
Stratford M: Food and Beverage Spoilage Yeasts. Yeasts in Food and Beverages. Edited by: Querol A, Fleet G. 2006, 335-379. full_text. Berlin: Springer
Guldfeldt LU, Arneborg N: Measurement of the effects of acetic acid and extracellular pH on intracellular pH of nonfermenting, individual Saccharomyces cerevisiae cells by fluorescence microscopy. Appl Environ Microbiol. 1998, 64 (2): 530-534.
Pampulha ME, Loureiro-Dias MC: Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid. Appl Microbiol Biotechnol. 1990, 34 (3): 375-380. 10.1007/BF00170063.
Pampulha ME, Loureiro-Dias MC: Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae. FEMS Microbiol Lett. 2000, 184 (1): 69-72. 10.1111/j.1574-6968.2000.tb08992.x.
Mira NP, Teixeira MC, Sá-Correia I: Adaptation and tolerance to weak acid stress in Saccharomyces cerevisiae: a genome-wide view. OMICS: A Journal of Integrative Biology. 2010, 14 (5): 525-540. 10.1089/omi.2010.0072.
Kotyk A, Georghiou G: Protonmotive force in yeasts-pH, buffer and species dependence. Biochem Int. 1991, 24 (4): 641-647.
Carmelo V, Santos H, Sá-Correia I: Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae. Biochim Biophys Acta. 1997, 1325: 63-70. 10.1016/S0005-2736(96)00245-3.
Tenreiro S, Nunes PA, Viegas CA, Neves MS, Teixeira MC, Cabral MG, Sá-Correia I: AQR1 gene (ORF YNL065w) encodes a plasma membrane transporter of the major facilitator superfamily that confers resistance to short-chain monocarboxylic acids and quinidine in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 2002, 292 (3): 741-748. 10.1006/bbrc.2002.6703.
Tenreiro S, Rosa PC, Viegas CA, Sá-Correia I: Expression of the AZR1 gene (ORF YGR224w), encoding a plasma membrane transporter of the major facilitator superfamily, is required for adaptation to acetic acid and resistance to azoles in Saccharomyces cerevisiae. Yeast. 2000, 16 (16): 1469-1481. 10.1002/1097-0061(200012)16:16<1469::AID-YEA640>3.0.CO;2-A.
Fernandes AR, Mira NP, Vargas RC, Canelhas I, Sá-Correia I: Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun. 2005, 337 (1): 95-103. 10.1016/j.bbrc.2005.09.010.
Mira NP, Becker J, Sá-Correia I: Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid. OMICS: A Journal of Integrative Biology. 2010, 14 (5): 587-601. 10.1089/omi.2010.0048.
Alejandro-Osorio AL, Huebert DJ, Porcaro DT, Sonntag ME, Nillasithanukroh S, Will JL, Gasch AP: The histone deacetylase Rpd3p is required for transient changes in genomic expression in response to stress. Genome Biol. 2009, 10 (5): R57- 10.1186/gb-2009-10-5-r57.
Goossens A, de la Fuente N, Forment J, Serrano R, Portillo F: Regulation of Yeast H+-ATPase by Protein Kinases Belonging to a Family Dedicated to Activation of Plasma Membrane Transporters. Mol Cell Biol. 2000, 20 (20): 7654-7661. 10.1128/MCB.20.20.7654-7661.2000.
Kawahata M, Masaki K, Fujii T, Iefujii H: Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res. 2006, 6: 924-936. 10.1111/j.1567-1364.2006.00089.x.
Herman PK: Stationary phase in yeast. Curr Opin Microbiol. 2002, 5 (6): 602-607. 10.1016/S1369-5274(02)00377-6.
Hillenmeyer ME, Fung E, Wildenhain J, Pierce SE, Hoon S, Lee W, Proctor M, St Onge RP, Tyers M, Koller D, et al.: The Chemical Genomic Portrait of Yeast: Uncovering a Phenotype for All Genes. Science. 2008, 320 (5874): 362-365. 10.1126/science.1150021.
Mroczek S, Kufel J: Apoptotic signals induce specific degradation of ribosomal RNA in yeast. Nucleic Acids Res. 2008, 36 (9): 2874-2888. 10.1093/nar/gkm1100.
Viegas CA, Almeida PF, Cavaco M, Sá-Correia I: The H(+)-ATPase in the plasma membrane of Saccharomyces cerevisiae is activated during growth latency in octanoic acid-supplemented medium accompanying the decrease in intracellular pH and cell viability. Appl Environ Microbiol. 1998, 64 (2): 779-783.
Fernandes AR, Durao PJ, Santos PM, Sá-Correia I: Activation and significance of vacuolar H+-ATPase in Saccharomyces cerevisiae adaptation and resistance to the herbicide 2, 4-dichlorophenoxyacetic acid. Biochem Biophys Res Commun. 2003, 312 (4): 1317-1324. 10.1016/j.bbrc.2003.11.072.
Makrantoni V, Dennison P, Stark MJ, Coote PJ: A novel role for the yeast protein kinase Dbf2p in vacuolar H+-ATPase function and sorbic acid stress tolerance. Microbiology. 2007, 153 (Pt 12): 4016-4026. 10.1099/mic.0.2007/010298-0.
Mulet JM, Leube MP, Kron SJ, Rios G, Fink GR, Serrano R: A novel mechanism of ion homeostasis and salt tolerance in yeast: the Hal4 and Hal5 protein kinases modulate the Trk1-Trk2 potassium transporter. Mol Cell Biol. 1999, 19 (5): 3328-3337.
Munson AM, Haydon DH, Love SL, Fell GL, Palanivel VR, Rosenwald AG: Yeast ARL1 encodes a regulator of K+ influx. J Cell Sci. 2004, 117 (Pt 11): 2309-2320. 10.1242/jcs.01050.
Teixeira MC, Monteiro P, Jain P, Tenreiro S, Fernandes AR, Mira NP, Alenquer M, Oliveira A, Freitas AT, Sá-Correia I: The YEASTRACT database: a tool for the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res. 2006, 34: D446-D451. 10.1093/nar/gkj013.
Almeida B, Ohlmeier S, Almeida AJ, Madeo F, Leão C, Rodrigues F, Ludovico P: Yeast protein expression profile during acetic acid-induced apoptosis indicates causal involvement of the TOR pathway. PROTEOMICS. 2009, 9 (3): 720-732. 10.1002/pmic.200700816.
Hong SP, Carlson M: Regulation of Snf1 protein kinase in response to environmental stress. J Biol Chem. 2007, 282 (23): 16838-16845. 10.1074/jbc.M700146200.
Santangelo GM: Glucose Signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2006, 70 (1): 253-282. 10.1128/MMBR.70.1.253-282.2006.
Giannattasio S, Guaragnella N, Corte-Real M, Passarella S, Marra E: Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death. Gene. 2005, 354: 93-98. 10.1016/j.gene.2005.03.030.
Guaragnella N, Antonacci L, Passarella S, Marra E, Giannattasio S: Hydrogen peroxide and superoxide anion production during acetic acid-induced yeast programmed cell death. Folia Microbiol. 2007, 52 (3): 237-240. 10.1007/BF02931304.
Porter NA, Caldwell SE, Mills KA: Mechanisms of free radical oxidation of unsaturated lipids. Lipids. 1995, 30 (4): 277-290. 10.1007/BF02536034.
van der Rest ME, Kamminga AH, Nakano A, Anraku Y, Poolman B, Konings WN: The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis. Microbiol Rev. 1995, 59 (2): 304-322.
Dickson RC: Thematic review series: sphingolipids. New insights into sphingolipid metabolism and function in budding yeast. J Lipid Res. 2008, 49 (5): 909-921. 10.1194/jlr.R800003-JLR200.
Wilson WA, Hawley SA, Hardie DG: Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr Biol. 1996, 6 (11): 1426-1434. 10.1016/S0960-9822(96)00747-6.
Mollapour M, Shepherd A, Piper PW: Presence of the Fps1p aquaglyceroporin channel is essential for Hog1p activation, but suppresses the Slt2(Mpk1)p activation, with acetic acid stress of yeast. Microbiology. 2009, 155: 3304-3311. 10.1099/mic.0.030502-0.
Simões T, Mira NP, Fernandes AR, Sá-Correia I: The SPI1 gene, encoding a glycosylphosphatidylinositol (GPI)-anchored cell wall protein, plays a prominent role in the development of yeast resistance to lipophilic weak acids food preservatives. Appl Environ Microb. 2006, 72: 7168-7175. 10.1128/AEM.01476-06.
Mollapour M, Fong D, Balakrishnan K, Harris N, Thompson S, Schuller C, Kuchler K, Piper PW: Screening the yeast deletant mutant collection for hypersensitivity and hyper-resistance to sorbate, a weak organic acid food preservative. Yeast. 2004, 21 (11): 927-946. 10.1002/yea.1141.
Mira NP, Lourenco AB, Fernandes AR, Becker JD, Sá-Correia I: The RIM101 pathway has a role in Saccharomyces cerevisiae adaptive response and resistance to propionic acid and other weak acids. FEMS Yeast Res. 2009, 9 (2): 202-216. 10.1111/j.1567-1364.2008.00473.x.
Perez-Valle J, Jenkins H, Merchan S, Montiel V, Ramos J, Sharma S, Serrano R, Yenush L: Key role for intracellular K+ and protein kinases Sat4/Hal4 and Hal5 in the plasma membrane stabilization of yeast nutrient transporters. Mol Cell Biol. 2007, 27 (16): 5725-5736. 10.1128/MCB.01375-06.
Aiking H, Tempest DW: Growth and physiology of Candida utilis NCYC 321 in potassium-limited chemostat culture. Arch Microbiol. 1976, 108 (1): 117-124. 10.1007/BF00425101.
Rodriguez-Navarro A: Potassium transport in fungi and plants. Biochim Biophys Acta. 2000, 1469 (1): 1-30.
Serrano R: Transport across yeast vacuolar and plasma membranes. The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis, and energetics. Edited by: Broach JR, Jones EW, Pringle JR. 1991, 523-585. NY: Cold Spring Harbor Laboratory Press
Yenush L, Mulet JM, Arino J, Serrano R: The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. EMBO J. 2002, 21 (5): 920-929. 10.1093/emboj/21.5.920.
Macpherson N, Shabala L, Rooney H, Jarman MG, Davies JM: Plasma membrane H+ and K+ transporters are involved in the weak-acid preservative response of disparate food spoilage yeasts. Microbiology. 2005, 151: 1995-2003. 10.1099/mic.0.27502-0.
Rodriguez-Navarro A, Ramos J: Dual system for potassium transport in Saccharomyces cerevisiae. J Bacteriol. 1984, 159 (3): 940-945.
Kosman DJ: Molecular mechanisms of iron uptake in fungi. Mol Microbiol. 2003, 47 (5): 1185-1197. 10.1046/j.1365-2958.2003.03368.x.
Chen OS, Crisp RJ, Valachovic M, Bard M, Winge DR, Kaplan J: Transcription of the yeast iron regulon does not respond directly to iron but rather to iron-sulfur cluster biosynthesis. J Biol Chem. 2004, 279 (28): 29513-29518. 10.1074/jbc.M403209200.
Rutherford JC, Ojeda L, Balk J, Muhlenhoff U, Lill R, Winge DR: Activation of the iron regulon by the yeast Aft1/Aft2 transcription factors depends on mitochondrial but not cytosolic iron-sulfur protein biogenesis. J Biol Chem. 2005, 280 (11): 10135-10140. 10.1074/jbc.M413731200.
Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G: Engineering yeast transcription machinery for improved ethanol tolerance and production. Science. 2006, 314 (5805): 1565-1568. 10.1126/science.1131969.
Cardona F, Carrasco P, Perez-Ortin JE, del Olmo M, Aranda A: A novel approach for the improvement of stress resistance in wine yeasts. Int J Food Microbiol. 2007, 114 (1): 83-91. 10.1016/j.ijfoodmicro.2006.10.043.
Camacho M, Ramos J, Rodríguez-Navarro A: Potassium Requirements of Saccharomyces cerevisiae. Curr Microbiol. 1981, 6: 295-299. 10.1007/BF01566880.