Genome sequencing brought Gossypium biology research into a new era
Tóm tắt
Từ khóa
Tài liệu tham khảo
Andres, R.J., Coneva, V., Frank, M.H., Tuttle, J.R., Samayoa, L.F., Han, S. W., Kaur, B., Zhu, L., Fang, H., Bowman, D.T., Rojas-Pierce, M., Haigler, C.H., Jones, D.C., Holland, J.B., Chitwood, D.H., and Kuraparthy, V. (2016). Modifications to a LATE MERISTEM IDENTITY1 gene are responsible for the major leaf shapes of Upland cotton (Gossypium hirsutum L.). Proc Natl Acad Sci USA 114, E57–E66.
Cai, C., Zhu, G., Zhang, T., and Guo, W. (2017). High-density 80 K SNP array is a powerful tool for genotyping G. hirsutum accessions and genome analysis. BMC Genomics 18, 654.
Chen, X., Lu, X., Shu, N., Wang, S., Wang, J., Wang, D., Guo, L., and Ye, W. (2017). Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system. Sci Rep 7, 44304.
Fang, L., Gong, H., Hu, Y., Liu, C., Zhou, B., Huang, T., Wang, Y., Chen, S., Fang, D.D., Du, X., Chen, H., Chen, J., Wang, S., Wang, Q., Wan, Q., Liu, B., Pan, M., Chang, L., Wu, H., Mei, G., Xiang, D., Li, X., Cai, C., Zhu, X., Chen, Z.J., Han, B., Chen, X., Guo, W., Zhang, T., and Huang, X. (2017a). Genomic insights into divergence and dual domestication of cultivated allotetraploid cottons. Genome Biol 18, 33.
Fang, L., Wang, Q., Hu, Y., Jia, Y., Chen, J., Liu, B., Zhang, Z., Guan, X., Chen, S., Zhou, B., Mei, G., Sun, J., Pan, Z., He, S., Xiao, S., Shi, W., Gong, W., Liu, J., Ma, J., Cai, C., Zhu, X., Guo, W., Du, X., and Zhang, T. (2017b). Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet 49, 1089–1098.
Hirai, M.Y., and Saito, K. (2004). Post-genomics approaches for the elucidation of plant adaptive mechanisms to sulphur deficiency. J Exp Bot 55, 1871–1879.
Huang, J., Chen, F., Wu, S., Li, J., and Xu, W. (2016). Cotton GhMYB7 is predominantly expressed in developing fibers and regulates secondary cell wall biosynthesis in transgenic Arabidopsis. Sci China Life Sci 59, 194–205.
Li, F., Fan, G., Lu, C., Xiao, G., Zou, C., Kohel, R.J., Ma, Z., Shang, H., Ma, X., Wu, J., Liang, X., Huang, G., Percy, R.G., Liu, K., Yang, W., Chen, W., Du, X., Shi, C., Yuan, Y., Ye, W., Liu, X., Zhang, X., Liu, W., Wei, H., Wei, S., Huang, G., Zhang, X., Zhu, S., Zhang, H., Sun, F., Wang, X., Liang, J., Wang, J., He, Q., Huang, L., Wang, J., Cui, J., Song, G., Wang, K., Xu, X., Yu, J.Z., Zhu, Y., and Yu, S. (2015). Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33, 524–530.
Li, F., Fan, G., Wang, K., Sun, F., Yuan, Y., Song, G., Li, Q., Ma, Z., Lu, C., Zou, C., Chen, W., Liang, X., Shang, H., Liu, W., Shi, C., Xiao, G., Gou, C., Ye, W., Xu, X., Zhang, X., Wei, H., Li, Z., Zhang, G., Wang, J., Liu, K., Kohel, R.J., Percy, R.G., Yu, J.Z., Zhu, Y.X., Wang, J., and Yu, S. (2014). Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46, 567–572.
Liu, X., Zhao, B., Zheng, H.J., Hu, Y., Lu, G., Yang, C.Q., Chen, J.D., Chen, J.J., Chen, D.Y., Zhang, L., Zhou, Y., Wang, L.J., Guo, W.Z., Bai, Y.L., Ruan, J.X., Shangguan, X.X., Mao, Y.B., Shan, C.M., Jiang, J.P., Zhu, Y.Q., Jin, L., Kang, H., Chen, S.T., He, X.L., Wang, R., Wang, Y. Z., Chen, J., Wang, L.J., Yu, S.T., Wang, B.Y., Wei, J., Song, S.C., Lu, X.Y., Gao, Z.C., Gu, W.Y., Deng, X., Ma, D., Wang, S., Liang, W.H., Fang, L., Cai, C.P., Zhu, X.F., Zhou, B.L., Jeffrey Chen, Z., Xu, S.H., Zhang, Y.G., Wang, S.Y., Zhang, T.Z., Zhao, G.P., and Chen, X.Y. (2015). Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Sci Rep 5, 14139.
Ma, D., Hu, Y., Yang, C., Liu, B., Fang, L., Wan, Q., Liang, W., Mei, G., Wang, L., Wang, H., Ding, L., Dong, C., Pan, M., Chen, J., Wang, S., Chen, S., Cai, C., Zhu, X., Guan, X., Zhou, B., Zhu, S., Wang, J., Guo, W., Chen, X., and Zhang, T. (2016). Genetic basis for glandular trichome formation in cotton. Nat Commun 7, 10456.
Maurer-Alcala, X.X., and Katz, L.A. (2015). An epigenetic toolkit allows for diverse genome architectures in eukaryotes. Curr Opin Genet Dev 35, 93–99.
Schmitt, A.D., Hu, M., and Ren, B. (2016). Genome-wide mapping and analysis of chromosome architecture. Nat Rev Mol Cell Biol 17, 743–755.
Shan, C.M., Shangguan, X.X., Zhao, B., Zhang, X.F., Chao, L.M., Yang, C. Q., Wang, L.J., Zhu, H.Y., Zeng, Y.D., Guo, W.Z., Zhou, B.L., Hu, G.J., Guan, X.Y., Chen, Z.J., Wendel, J.F., Zhang, T.Z., and Chen, X.Y. (2014). Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3. Nat Commun 5, 5519.
Song, Q., Zhang, T., Stelly, D.M., and Chen, Z.J. (2017). Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons. Genome Biol 18, 99.
Wan, Q., Guan, X., Yang, N., Wu, H., Pan, M., Liu, B., Fang, L., Yang, S., Hu, Y., Ye, W., Zhang, H., Ma, P., Chen, J., Wang, Q., Mei, G., Cai, C., Yang, D., Wang, J., Guo, W., Zhang, W., Chen, X., and Zhang, T. (2016). Small interfering RNAs from bidirectional transcripts of Gh-MML3_A12 regulate cotton fiber development. New Phytol 210, 1298–1310.
Wang, K., Wang, Z., Li, F., Ye, W., Wang, J., Song, G., Yue, Z., Cong, L., Shang, H., Zhu, S., Zou, C., Li, Q., Yuan, Y., Lu, C., Wei, H., Gou, C., Zheng, Z., Yin, Y., Zhang, X., Liu, K., Wang, B., Song, C., Shi, N., Kohel, R.J., Percy, R.G., Yu, J.Z., Zhu, Y.X., Wang, J., and Yu, S. (2012). The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44, 1098–1103.
Wang, M., Tu, L., Lin, M., Lin, Z., Wang, P., Yang, Q., Ye, Z., Shen, C., Li, J., Zhang, L., Zhou, X., Nie, X., Li, Z., Guo, K., Ma, Y., Huang, C., Jin, S., Zhu, L., Yang, X., Min, L., Yuan, D., Zhang, Q., Lindsey, K., and Zhang, X. (2017a). Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat Genet 49, 579–587.
Wang, P., Zhang, J., Sun, L., Ma, Y., Xu, J., Liang, S., Deng, J., Tan, J., Zhang, Q., Tu, L., Daniell, H., Jin, S., and Zhang, X. (2017b). High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum ) using CRISPR/Cas9 system. Plant Biotechnol J in press doi: 10.1111/pbi.12755.
Wang, X., Chen, E., Ge, X., Gong, Q., Butt, H.I., Zhang, C., Yang, Z., Li, F., and Zhang, X. (2017c). Overexpressed BRH1, a RING finger gene, alters rosette leaf shape in Arabidopsis thaliana. Sci China Life Sci in press doi: 10.1007/s11427-017-9133-8.
Wang, Y., Meng, Z., Liang, C., Meng, Z., Wang, Y., Sun, G., Zhu, T., Cai, Y., Guo, S., Zhang, R., and Lin, Y. (2017d). Increased lateral root formation by CRISPR/Cas9-mediated editing of arginase genes in cotton. Sci China Life Sci 60, 524–527.
Yang, Z., Zhang, C., Yang, X., Liu, K., Wu, Z., Zhang, X., Zheng, W., Xun, Q., Liu, C., Lu, L., Yang, Z., Qian, Y., Xu, Z., Li, C., Li, J., and Li, F. (2014). PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation. New Phytol 203, 437–448.
Yuan, D., Tang, Z., Wang, M., Gao, W., Tu, L., Jin, X., Chen, L., He, Y., Zhang, L., Zhu, L., Li, Y., Liang, Q., Lin, Z., Yang, X., Liu, N., Jin, S., Lei, Y., Ding, Y., Li, G., Ruan, X., Ruan, Y., and Zhang, X. (2015). The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres. Sci Rep 5, 17662.
Zhang, T., Hu, Y., Jiang, W., Fang, L., Guan, X., Chen, J., Zhang, J., Saski, C.A., Scheffler, B.E., Stelly, D.M., Hulse-Kemp, A.M., Wan, Q., Liu, B., Liu, C., Wang, S., Pan, M., Wang, Y., Wang, D., Ye, W., Chang, L., Zhang, W., Song, Q., Kirkbride, R.C., Chen, X., Dennis, E., Llewellyn, D.J., Peterson, D.G., Thaxton, P., Jones, D.C., Wang, Q., Xu, X., Zhang, H., Wu, H., Zhou, L., Mei, G., Chen, S., Tian, Y., Xiang, D., Li, X., Ding, J., Zuo, Q., Tao, L., Liu, Y., Li, J., Lin, Y., Hui, Y., Cao, Z., Cai, C., Zhu, X., Jiang, Z., Zhou, B., Guo, W., Li, R., and Chen, Z.J. (2015). Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33, 531–537.