Genome sequence of a proteolytic (Group I) <i>Clostridium botulinum</i> strain Hall A and comparative analysis of the clostridial genomes

Genome Research - Tập 17 Số 7 - Trang 1082-1092 - 2007
Mohammed Sebaihia1, Michael W. Peck2, Nigel P. Minton3, Nicholas R. Thomson1, Matthew T. G. Holden1, Wilfrid J. Mitchell4, Andrew T. Carter2, Stephen D. Bentley1, David R. Mason2, Lisa Crossman1, Catherine J. Paul5, Alasdair Ivens1, M.H.J. Wells-Bennik2, Ian J. Davis3, Ana Cerdeño-Tárraga1, Carol Churcher1, Michael A. Quail1, Tracey Chillingworth1, Theresa Feltwell1, Arnaud Kerhornou1, Ian Goodhead1, Zahra Hance1, Kay Jagels1, Natasha Larke1, Mark Maddison1, Sharon Moule1, Andrew J. Mungall1, Halina Norbertczak1, Ester Rabbinowitsch1, Mandy Sanders1, Mark Simmonds1, Brian R. White1, Sally Whithead1, Julian Parkhill1
1Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
2Institute of Food Research, Norwich Research Park Colney, Norwich NR4 7UA, United Kingdom
3Centre for Biomolecular Sciences, Institute of Infection, Immunity and Inflammation, School of Molecular Medical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
4School of Life Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom
5Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario K1A 0L2, Canada

Tóm tắt

Clostridium botulinum is a heterogeneous Gram-positive species that comprises four genetically and physiologically distinct groups of bacteria that share the ability to produce botulinum neurotoxin, the most poisonous toxin known to man, and the causative agent of botulism, a severe disease of humans and animals. We report here the complete genome sequence of a representative of Group I (proteolytic) C. botulinum (strain Hall A, ATCC 3502). The genome consists of a chromosome (3,886,916 bp) and a plasmid (16,344 bp), which carry 3650 and 19 predicted genes, respectively. Consistent with the proteolytic phenotype of this strain, the genome harbors a large number of genes encoding secreted proteases and enzymes involved in uptake and metabolism of amino acids. The genome also reveals a hitherto unknown ability of C. botulinum to degrade chitin. There is a significant lack of recently acquired DNA, indicating a stable genomic content, in strong contrast to the fluid genome of Clostridium difficile, which can form longer-term relationships with its host. Overall, the genome indicates that C. botulinum is adapted to a saprophytic lifestyle both in soil and aquatic environments. This pathogen relies on its toxin to rapidly kill a wide range of prey species, and to gain access to nutrient sources, it releases a large number of extracellular enzymes to soften and destroy rotting or decayed tissues.

Từ khóa


Tài liệu tham khảo

10.1128/JB.187.20.7103-7118.2005

Anonymous. (2006) Wound botulism in injecting drug users in the United Kingdom. CDR Weekly, http://www.camr.org.uk/cdr/archives/archive06/News/news1306.htm#bot .

10.1111/j.1348-0421.1998.tb01965.x

Arnon, S.S. (2004) in Textbook of pediatric infectious disease, Infant botulism, eds Feigen, R.D. Cherry, J.D. (Saunders, Philadelphia) 5th ed. pp 1758–1766.

10.1128/JB.186.7.2115-2122.2004

10.1016/0014-5793(82)80522-X

Baldassarri,, 1991, Capsule-like structures in Clostridium difficile strains, Microbiologica, 14, 295

10.1128/MMBR.69.4.608-634.2005

10.1099/00222615-25-3-191

10.1099/jmm.0.05379-0

10.1006/anae.2002.0424

10.1073/pnas.0335853100

10.1016/0092-8674(91)90238-T

10.1046/j.1365-2958.2001.02461.x

10.1093/bioinformatics/bti553

10.1038/nrmicro885

Dargatz,, 1993, The heterodimeric protease clostripain from Clostridium histolyticum is encoded by a single gene, Mol. Gen. Genet., 240, 140, 10.1007/BF00276893

10.1111/j.1365-2958.2005.04583.x

10.1016/0882-4010(90)90088-8

Dekleva,, 1990, Purification and characterization of a protease from Clostridium botulinum type A that nicks single-chain type A botulinum neurotoxin into the di-chain form, J. Bacteriol., 172, 2498, 10.1128/jb.172.5.2498-2503.1990

Dezfulian,, 1980, Cultural and physiological characteristics and antimicrobial susceptibility of Clostridium botulinum isolates from foodborne and infant botulism cases, J. Clin. Microbiol., 11, 604, 10.1128/jcm.11.6.604-609.1980

10.1046/j.1365-2958.2002.02867.x

10.1128/AEM.66.12.5480-5483.2000

10.1007/s00284-002-3851-1

Dupuy,, 2006, Regulation of toxin and bacteriocin synthesis in Clostridium species by a new subgroup of RNA polymerase sigma-factors, Res. Microbiol., 157, 201, 10.1016/j.resmic.2005.11.004

10.1016/j.pediatrneurol.2004.10.001

10.1002/jcb.240510111

10.1128/JB.185.11.3352-3360.2003

10.1111/j.1574-6968.1993.tb06081.x

10.1007/BF00873087

Kil,, 1994, Cloning and sequence analysis of a gene encoding a 67-kilodalton myosin-cross-reactive antigen of Streptococcus pyogenes reveals its similarity with class II major histocompatibility antigens, Infect. Immun., 62, 2440, 10.1128/iai.62.6.2440-2449.1994

10.1038/23512

10.1186/gb-2002-3-11-research0065

10.1111/j.1742-4658.2004.04498.x

10.1089/10665270252833190

Lund, B.M. Peck, M.W. (2000) in Clostridium botulinum in The microbiological safety and quality of food, ed Lund, B.M. (Aspen, Gaithersburg, MD), pp 1057–1109.

10.1006/anae.1999.0311

10.1046/j.1365-2958.2001.02539.x

Mills,, 1985, Improved selective medium for the isolation of lipase-positive Clostridium botulinum from feces of human infants, J. Clin. Microbiol., 21, 947, 10.1128/jcm.21.6.947-950.1985

Montgomery,, 1994, Induction of chitin-binding proteins during the specific attachment of the marine bacterium Vibrio harveyi to chitin, Appl. Environ. Microbiol., 60, 4284, 10.1128/aem.60.12.4284-4288.1994

10.1101/gr.5238106

10.1126/science.1103596

10.1128/JB.183.16.4823-4838.2001

10.1046/j.1365-2958.2003.03526.x

10.1111/j.1365-2958.2006.05315.x

10.1038/nrmicro1288

10.1128/AEM.02623-06

Peck, M.W. (2005) in Clostridium botulinum in Understanding pathogen behaviour, ed Griffiths, M. (Woodhead Press, Cambridge, UK), pp 531–548.

10.1111/j.1365-2672.2006.02987.x

10.1111/j.1365-2958.1996.tb02460.x

10.1074/jbc.M411372200

10.1016/j.anaerobe.2004.01.001

10.1093/bioinformatics/16.10.944

10.1128/JB.182.4.859-868.2000

10.1046/j.1365-2958.2003.03527.x

10.1128/JB.186.9.2523-2531.2004

10.1006/jmbi.1993.1411

10.1038/ng1830

10.1016/S0008-6215(97)00280-2

Shimizu, T. Okabe, A. Rood, J.I. (1997) in The Clostridia: Molecular biology & pathogenesis, Regulation of toxin production inClostridium perfringens , ed Rood, J.I. (Academic Press, London), pp 451–470.

10.1073/pnas.022493799

10.1128/JB.184.10.2587-2594.2002

Smith, L.D.S. Sugiyama, H. (1988) Botulism: The organism, its toxins, the disease (Charles C. Thomas, Springfield, IL).

10.1128/IAI.73.9.5450-5457.2005

Smyth, G.K. (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Applic. Genet. Mol. Biol. http://www.bepress.com/sagmb/vol3/iss1/art3 .

10.1042/bj0290889

10.1111/j.1365-2958.1992.tb01750.x

10.1128/AEM.71.9.4998-5003.2005

10.1016/S0966-842X(03)00079-9

Takumi,, 1983, Purification and characterization of a wall protein antigen from Clostridium botulinum type A, Infect. Immun., 39, 1346, 10.1128/iai.39.3.1346-1353.1983

Tasteyre,, 2000, A Clostridium difficile gene encoding flagellin, Microbiology, 146, 957

10.1016/S0966-842X(01)01977-1

10.1074/jbc.M504468200

10.1111/j.1365-2958.2006.05414.x

10.1086/318134

Whitmer,, 1988, Development of improved defined media for Clostridium botulinum serotypes A, B, and E, Appl. Environ. Microbiol., 54, 753, 10.1128/aem.54.3.753-759.1988

Wyss,, 1998, Flagellins, but not endoflagellar sheath proteins, of Treponema pallidum and of pathogen-related oral spirochetes are glycosylated, Infect. Immun., 66, 5751, 10.1128/IAI.66.12.5751-5754.1998