Genome Editing Reveals Glioblastoma Addiction to MicroRNA-10b
Tài liệu tham khảo
Floyd, 2014, Micro-masters of glioblastoma biology and therapy: increasingly recognized roles for microRNAs, Neuro-oncol., 16, 622, 10.1093/neuonc/nou049
Biagioni, 2013, The locus of microRNA-10b: a critical target for breast cancer insurgence and dissemination, Cell Cycle, 12, 2371, 10.4161/cc.25380
Tehler, 2011, The miR-10 microRNA precursor family, RNA Biol., 8, 728, 10.4161/rna.8.5.16324
Gabriely, 2011, Human glioma growth is controlled by microRNA-10b, Cancer Res., 71, 3563, 10.1158/0008-5472.CAN-10-3568
Teplyuk, 2012, MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity, Neuro-oncol., 14, 689, 10.1093/neuonc/nos074
Sun, 2011, MicroRNA-10b induces glioma cell invasion by modulating MMP-14 and uPAR expression via HOXD10, Brain Res., 1389, 9, 10.1016/j.brainres.2011.03.013
Ahmad, 2014, Up-regulation of microRNA-10b is associated with the development of breast cancer brain metastasis, Am. J. Transl. Res., 6, 384
Parrella, 2014, Evaluation of microRNA-10b prognostic significance in a prospective cohort of breast cancer patients, Mol. Cancer, 13, 142, 10.1186/1476-4598-13-142
Guessous, 2013, Oncogenic effects of miR-10b in glioblastoma stem cells, J. Neurooncol., 112, 153, 10.1007/s11060-013-1047-0
Ma, 2010, Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model, Nat. Biotechnol., 28, 341, 10.1038/nbt.1618
Ma, 2007, Tumour invasion and metastasis initiated by microRNA-10b in breast cancer, Nature, 449, 682, 10.1038/nature06174
Teplyuk, 2016, Therapeutic potential of targeting microRNA-10b in established intracranial glioblastoma: first steps toward the clinic, EMBO Mol. Med., 8, 268, 10.15252/emmm.201505495
Doudna, 2014, Genome editing. The new frontier of genome engineering with CRISPR-Cas9, Science, 346, 1258096, 10.1126/science.1258096
Swiech, 2015, In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9, Nat. Biotechnol., 33, 102, 10.1038/nbt.3055
Davis, 2014, Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair, Proc. Natl. Acad. Sci. USA, 111, E924, 10.1073/pnas.1400236111
Sander, 2014, CRISPR-Cas systems for editing, regulating and targeting genomes, Nat. Biotechnol., 32, 347, 10.1038/nbt.2842
Kleinstiver, 2015, Engineered CRISPR-Cas9 nucleases with altered PAM specificities, Nature, 523, 481, 10.1038/nature14592
Ran, 2013, Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity, Cell, 154, 1380, 10.1016/j.cell.2013.08.021
Shalem, 2014, Genome-scale CRISPR-Cas9 knockout screening in human cells, Science, 343, 84, 10.1126/science.1247005
Sanjana, 2014, Improved vectors and genome-wide libraries for CRISPR screening, Nat. Methods, 11, 783, 10.1038/nmeth.3047
Tian, 2010, MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines, J. Biol. Chem., 285, 7986, 10.1074/jbc.M109.062877
Zhang, 2015, Off-target effects in CRISPR/Cas9-mediated genome engineering, Mol. Ther. Nucleic Acids, 4, e264, 10.1038/mtna.2015.37
Incontro, 2014, Efficient, complete deletion of synaptic proteins using CRISPR, Neuron, 83, 1051, 10.1016/j.neuron.2014.07.043
Straub, 2014, CRISPR/Cas9-mediated gene knock-down in post-mitotic neurons, PLoS ONE, 9, e105584, 10.1371/journal.pone.0105584
Goldberg, 2014, Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting, Nature, 514, 633, 10.1038/nature13637
Huszthy, 2009, Remission of invasive, cancer stem-like glioblastoma xenografts using lentiviral vector-mediated suicide gene therapy, PLoS ONE, 4, e6314, 10.1371/journal.pone.0006314
Bayin, 2014, Selective lentiviral gene delivery to CD133-expressing human glioblastoma stem cells, PLoS ONE, 9, e116114, 10.1371/journal.pone.0116114
DePolo, 2000, VSV-G pseudotyped lentiviral vector particles produced in human cells are inactivated by human serum, Mol. Ther., 2, 218, 10.1006/mthe.2000.0116
Ran, 2013, Genome engineering using the CRISPR-Cas9 system, Nat. Protoc., 8, 2281, 10.1038/nprot.2013.143
Ran, 2015, In vivo genome editing using Staphylococcus aureus Cas9, Nature, 520, 186, 10.1038/nature14299
Kiani, 2015, Cas9 gRNA engineering for genome editing, activation and repression, Nat. Methods, 12, 1051, 10.1038/nmeth.3580
Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819, 10.1126/science.1231143
Wakimoto, 2012, Maintenance of primary tumor phenotype and genotype in glioblastoma stem cells, Neuro-oncol., 14, 132, 10.1093/neuonc/nor195
Wong, 2015, The Cancer Genome Atlas analysis predicts microRNA for targeting cancer growth and vascularization in glioblastoma, Mol. Ther., 23, 1234, 10.1038/mt.2015.72
Rodriguez, 2005, Wound-healing assay, Methods Mol. Biol., 294, 23
Festing, 2002, Guidelines for the design and statistical analysis of experiments using laboratory animals, ILAR J., 43, 244, 10.1093/ilar.43.4.244