Genome Editing Reveals Glioblastoma Addiction to MicroRNA-10b

Molecular Therapy - Tập 25 - Trang 368-378 - 2017
Rachid El Fatimy1, Shruthi Subramanian1, Erik J. Uhlmann1, Anna M. Krichevsky1
1Department of Neurology, Ann Romney Center for Neurologic Diseases, Initiative for RNA Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA

Tài liệu tham khảo

Floyd, 2014, Micro-masters of glioblastoma biology and therapy: increasingly recognized roles for microRNAs, Neuro-oncol., 16, 622, 10.1093/neuonc/nou049 Biagioni, 2013, The locus of microRNA-10b: a critical target for breast cancer insurgence and dissemination, Cell Cycle, 12, 2371, 10.4161/cc.25380 Tehler, 2011, The miR-10 microRNA precursor family, RNA Biol., 8, 728, 10.4161/rna.8.5.16324 Gabriely, 2011, Human glioma growth is controlled by microRNA-10b, Cancer Res., 71, 3563, 10.1158/0008-5472.CAN-10-3568 Teplyuk, 2012, MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity, Neuro-oncol., 14, 689, 10.1093/neuonc/nos074 Sun, 2011, MicroRNA-10b induces glioma cell invasion by modulating MMP-14 and uPAR expression via HOXD10, Brain Res., 1389, 9, 10.1016/j.brainres.2011.03.013 Ahmad, 2014, Up-regulation of microRNA-10b is associated with the development of breast cancer brain metastasis, Am. J. Transl. Res., 6, 384 Parrella, 2014, Evaluation of microRNA-10b prognostic significance in a prospective cohort of breast cancer patients, Mol. Cancer, 13, 142, 10.1186/1476-4598-13-142 Guessous, 2013, Oncogenic effects of miR-10b in glioblastoma stem cells, J. Neurooncol., 112, 153, 10.1007/s11060-013-1047-0 Ma, 2010, Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model, Nat. Biotechnol., 28, 341, 10.1038/nbt.1618 Ma, 2007, Tumour invasion and metastasis initiated by microRNA-10b in breast cancer, Nature, 449, 682, 10.1038/nature06174 Teplyuk, 2016, Therapeutic potential of targeting microRNA-10b in established intracranial glioblastoma: first steps toward the clinic, EMBO Mol. Med., 8, 268, 10.15252/emmm.201505495 Doudna, 2014, Genome editing. The new frontier of genome engineering with CRISPR-Cas9, Science, 346, 1258096, 10.1126/science.1258096 Swiech, 2015, In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9, Nat. Biotechnol., 33, 102, 10.1038/nbt.3055 Davis, 2014, Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair, Proc. Natl. Acad. Sci. USA, 111, E924, 10.1073/pnas.1400236111 Sander, 2014, CRISPR-Cas systems for editing, regulating and targeting genomes, Nat. Biotechnol., 32, 347, 10.1038/nbt.2842 Kleinstiver, 2015, Engineered CRISPR-Cas9 nucleases with altered PAM specificities, Nature, 523, 481, 10.1038/nature14592 Ran, 2013, Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity, Cell, 154, 1380, 10.1016/j.cell.2013.08.021 Shalem, 2014, Genome-scale CRISPR-Cas9 knockout screening in human cells, Science, 343, 84, 10.1126/science.1247005 Sanjana, 2014, Improved vectors and genome-wide libraries for CRISPR screening, Nat. Methods, 11, 783, 10.1038/nmeth.3047 Tian, 2010, MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines, J. Biol. Chem., 285, 7986, 10.1074/jbc.M109.062877 Zhang, 2015, Off-target effects in CRISPR/Cas9-mediated genome engineering, Mol. Ther. Nucleic Acids, 4, e264, 10.1038/mtna.2015.37 Incontro, 2014, Efficient, complete deletion of synaptic proteins using CRISPR, Neuron, 83, 1051, 10.1016/j.neuron.2014.07.043 Straub, 2014, CRISPR/Cas9-mediated gene knock-down in post-mitotic neurons, PLoS ONE, 9, e105584, 10.1371/journal.pone.0105584 Goldberg, 2014, Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting, Nature, 514, 633, 10.1038/nature13637 Huszthy, 2009, Remission of invasive, cancer stem-like glioblastoma xenografts using lentiviral vector-mediated suicide gene therapy, PLoS ONE, 4, e6314, 10.1371/journal.pone.0006314 Bayin, 2014, Selective lentiviral gene delivery to CD133-expressing human glioblastoma stem cells, PLoS ONE, 9, e116114, 10.1371/journal.pone.0116114 DePolo, 2000, VSV-G pseudotyped lentiviral vector particles produced in human cells are inactivated by human serum, Mol. Ther., 2, 218, 10.1006/mthe.2000.0116 Ran, 2013, Genome engineering using the CRISPR-Cas9 system, Nat. Protoc., 8, 2281, 10.1038/nprot.2013.143 Ran, 2015, In vivo genome editing using Staphylococcus aureus Cas9, Nature, 520, 186, 10.1038/nature14299 Kiani, 2015, Cas9 gRNA engineering for genome editing, activation and repression, Nat. Methods, 12, 1051, 10.1038/nmeth.3580 Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819, 10.1126/science.1231143 Wakimoto, 2012, Maintenance of primary tumor phenotype and genotype in glioblastoma stem cells, Neuro-oncol., 14, 132, 10.1093/neuonc/nor195 Wong, 2015, The Cancer Genome Atlas analysis predicts microRNA for targeting cancer growth and vascularization in glioblastoma, Mol. Ther., 23, 1234, 10.1038/mt.2015.72 Rodriguez, 2005, Wound-healing assay, Methods Mol. Biol., 294, 23 Festing, 2002, Guidelines for the design and statistical analysis of experiments using laboratory animals, ILAR J., 43, 244, 10.1093/ilar.43.4.244