Genexpressions- und Proteomanalyse – Reif für die klinische Anwendung?
Tóm tắt
Mit der Einführung der Genexpressionsanalyse des Endometriums eröffnen sich neue diagnostische und therapeutische Möglichkeiten für die Reproduktionsmedizin. Es ist nun möglich, anhand von Genexpressionsmustern den Zykluszeitpunkt einer Endometriumbiopsie sicher zu bestimmen. Darüber hinaus ist es gelungen, die Transkriptomsignatur eines rezeptiven Endometriums zu identifizieren. Bei wiederholtem Implantationsversagen kann darüber bei 25 % der Patientinnen ein verschobenes Implantationsfenster diagnostiziert werden. Die genomische Signatur des individuellen Endometriums im Vergleich zur etablierten „fertilen Signatur“ erlaubt den zeitlich angepassten und damit personalisierten Embryonentransfer. Ein nicht unerheblicher Teil der Patientinnen mit wiederholtem Implantationsversagen kann jedoch nach wie vor nicht adäquat behandelt werden. Pathologische Genexpressionsmuster werden als Ursache diskutiert, sind aber bisher kaum behandelbar. Womöglich können mikroRNA- und Proteomanalysen in der näheren Zukunft weitere diagnostische und therapeutische Lücken schließen.
Tài liệu tham khảo
Polanski LT, Baumgarten MN, Quenby S et al (2014) What exactly do we mean by “recurrent implantation failure”? A systematic review and opinion. Reprod Biomed Online 28:409–423. https://doi.org/10.1016/j.rbmo.2013.12.006
Voullaire L, Wilton L, McBain J et al (2002) Chromosome abnormalities identified by comparative genomic hybridization in embryos from women with repeated implantation failure. Mol Hum Reprod 8:1035–1041
Revel A (2012) Defective endometrial receptivity. Fertil Steril 97:1028–1032. https://doi.org/10.1016/j.fertnstert.2012.03.039
Simon A, Laufer N (2012) Repeated implantation failure: clinical approach. Fertil Steril 97:1039–1043. https://doi.org/10.1016/j.fertnstert.2012.03.010
van der Gaast MH, Beier-Hellwig K, Fauser BCJM et al (2003) Endometrial secretion aspiration prior to embryo transfer does not reduce implantation rates. Reprod Biomed Online 7:105–109
Noyes RW, Hertig AT, Rock J (1950) Dating the endometrial biopsy. Fertil Steril 1:3–25. https://doi.org/10.1016/S0015-0282(16)30062-0
Hess AP, Talbi S, Hamilton AE et al (2013) The human oviduct transcriptome reveals an anti-inflammatory, anti-angiogenic, secretory and matrix-stable environment during embryo transit. Reprod Biomed Online 27:423–435. https://doi.org/10.1016/j.rbmo.2013.06.013
Coutifaris C, Myers ER, Guzick DS et al (2004) Histological dating of timed endometrial biopsy tissue is not related to fertility status. Fertil Steril 82:1264–1272. https://doi.org/10.1016/j.fertnstert.2004.03.069
Aghajanova L, Hamilton A, Giudice L (2008) Uterine Receptivity to Human Embryonic Implantation: Histology, Biomarkers, and Transcriptomics. Semin Cell Dev Biol 19:204–211. https://doi.org/10.1016/j.semcdb.2007.10.008
Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470
Barrett JC, Kawasaki ES (2003) Microarrays: the use of oligonucleotides and cDNA for the analysis of gene expression. Drug Discov Today 8:134–141
Ruiz-Alonso M, Blesa D, Simón C (2012) The genomics of the human endometrium. Biochim Biophys Acta 1822:1931–1942. https://doi.org/10.1016/j.bbadis.2012.05.004
Kao LC, Tulac S, Lobo S et al (2002) Global gene profiling in human endometrium during the window of implantation. Endocrinology 143:2119–2138. https://doi.org/10.1210/endo.143.6.8885
Ponnampalam AP, Weston GC, Trajstman AC et al (2004) Molecular classification of human endometrial cycle stages by transcriptional profiling. MHR Basic Sci Reprod Med 10:879–893. https://doi.org/10.1093/molehr/gah121
Ruiz-Alonso M, Blesa D, Díaz-Gimeno P et al (2013) The endometrial receptivity array for diagnosis and personalized embryo transfer as a treatment for patients with repeated implantation failure. Fertil Steril 100:818–824. https://doi.org/10.1016/j.fertnstert.2013.05.004
Díaz-Gimeno P, Horcajadas JA, Martínez-Conejero JA et al (2011) A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil Steril 95:50–60, 60.e1–15. https://doi.org/10.1016/j.fertnstert.2010.04.063
Katzorke N, Vilella F, Ruiz M et al (2016) Diagnosis of endometrial-factor infertility: current approaches and new avenues for research. Geburtshilfe Frauenheilkd 76:699–703. https://doi.org/10.1055/s-0042-103752
Díaz-Gimeno P, Ruiz-Alonso M, Blesa D et al (2013) The accuracy and reproducibility of the endometrial receptivity array is superior to histology as a diagnostic method for endometrial receptivity. Fertil Steril 99:508–517. https://doi.org/10.1016/j.fertnstert.2012.09.046
Tan J, Kan A, Hitkari J et al (2018) The role of the endometrial receptivity array (ERA) in patients who have failed euploid embryo transfers. J Assist Reprod Genet. https://doi.org/10.1007/s10815-017-1112-2
Enciso M, Carrascosa JP, Sarasa J et al (2018) Development of a new comprehensive and reliable endometrial receptivity map (ER Map/ER Grade) based on RT-qPCR gene expression analysis. Hum Reprod 33:220–228. https://doi.org/10.1093/humrep/dex370
Sebastian-Leon P, Garrido N, Remohí J et al (2018) Asynchronous and pathological windows of implantation: two causes of recurrent implantation failure. Hum Reprod 33:626–635. https://doi.org/10.1093/humrep/dey023
Koot YEM, van Hooff SR, Boomsma CM et al (2016) An endometrial gene expression signature accurately predicts recurrent implantation failure after IVF. Sci Rep 6:19411. https://doi.org/10.1038/srep19411
Ambros V (2001) microRNAs: tiny regulators with great potential. Cell 107:823–826
Altmäe S, Martinez-Conejero JA, Esteban FJ et al (2013) MicroRNAs miR-30b, miR-30d, and miR-494 regulate human endometrial receptivityReprod Sci Thousand Oaks Calif. Reprod Sci 20:308–317. https://doi.org/10.1177/1933719112453507
Revel A, Achache H, Stevens J et al (2011) MicroRNAs are associated with human embryo implantation defects. Hum Reprod 26:2830–2840. https://doi.org/10.1093/humrep/der255
Sha A‑G, Liu J‑L, Jiang X‑M et al (2011) Genome-wide identification of micro-ribonucleic acids associated with human endometrial receptivity in natural and stimulated cycles by deep sequencing. Fertil Steril 96:150–155.e5. https://doi.org/10.1016/j.fertnstert.2011.04.072
Vilella F, Moreno-Moya JM, Balaguer N et al (2015) Hsa-miR-30d, secreted by the human endometrium, is taken up by the pre-implantation embryo and might modify its transcriptome. Development 142:3210–3221. https://doi.org/10.1242/dev.124289
Meyer HE, Stühler K (2007) High-performance proteomics as a tool in biomarker discovery. Proteomics 7(Suppl 1):18–26. https://doi.org/10.1002/pmic.200700183
Kosteria I, Anagnostopoulos AK, Kanaka-Gantenbein C et al (2017) The use of proteomics in assisted reproduction. In Vivo 31:267–283. https://doi.org/10.21873/invivo.11056
Chen JI-C, Hannan NJ, Mak Y et al (2009) Proteomic characterization of midproliferative and midsecretory human endometrium. J Proteome Res 8:2032–2044. https://doi.org/10.1021/pr801024g
Domínguez F, Garrido-Gómez T, López JA et al (2009) Proteomic analysis of the human receptive versus non-receptive endometrium using differential in-gel electrophoresis and MALDI-MS unveils stathmin 1 and annexin A2 as differentially regulated. Hum Reprod 24:2607–2617. https://doi.org/10.1093/humrep/dep230
Garrido-Gómez T, Quiñonero A, Antúnez O et al (2014) Deciphering the proteomic signature of human endometrial receptivity. Hum Reprod 29:1957–1967. https://doi.org/10.1093/humrep/deu171
Hannan NJ, Stephens AN, Rainczuk A et al (2010) 2D-DiGE analysis of the human endometrial secretome reveals differences between receptive and nonreceptive states in fertile and infertile women. J Proteome Res 9:6256–6264. https://doi.org/10.1021/pr1004828