Genetic parameters for growth and faecal worm egg count following Haemonchus contortus experimental infestations using pedigree and molecular information

Springer Science and Business Media LLC - Tập 46 - Trang 1-9 - 2014
Fabrizio Assenza1, Jean-Michel Elsen1, Andrés Legarra1, Clément Carré1, Guillaume Sallé2,3, Christèle Robert-Granié1, Carole R Moreno1
1INRA, UR0631 Station d'Amélioration Génétique des Animaux, Castanet-Tolosan, France
2INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
3Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France

Tóm tắt

Haemonchosis is a parasitic disease that causes severe economic losses in sheep industry. In recent years, the increasing resistance of the parasite to anthelmintics has raised the need for alternative control strategies. Genetic selection is a promising alternative but its efficacy depends on the availability of genetic variation and on the occurrence of favourable genetic correlations between the traits included in the breeding goal. The objective of this study was twofold. First, to estimate both the heritability of and the genetic correlations between growth traits and parasite resistance traits, using bivariate linear mixed animal models, from the phenotypes and genotypes of 1004 backcross lambs (considered as a single population), which underwent two subsequent experimental infestations protocols with Haemonchus contortus. Second, to compare the precision of the estimates when using two different relationship matrices: including pedigree information only or including also SNP (single nucleotide polymorphism) information. Heritabilities were low for average daily gain before infestation (0.10 to 0.15) and average daily gain during the first infestation (0.11 to 0.16), moderate for faecal egg counts during the first infestation (0.21 to 0.38) and faecal egg counts during the second infestation (0.48 to 0.55). Genetic correlations between both growth traits and faecal egg count during the naïve infestation were equal to zero but the genetic correlation between faecal egg count during the second infestation and growth was positive in a Haemonchus contortus free environment and negative in a contaminated environment. The standard errors of the estimates obtained by including SNP information were smaller than those obtained by including pedigree information only. The genetic parameters estimates suggest that growth performance can be selected for independently of selection on resistance to naïve infestation. Selection for increased growth in a non-contaminated environment could lead to more susceptible animals with long-term exposure to the infestation but it could be possible to select for increased growth in a contaminated environment while also increasing resistance to the long-term exposure to the parasite. The use of molecular information increases the precision of the estimates.

Tài liệu tham khảo

Urquhart GM: Veterinary Parasitology. 1996, Oxford: Blackwell Science Waller PJ, Chandrawathani P: Haemonchus contortus: parasite problem No. 1 from tropics-polar circle. Problems and prospects for control based on epidemiology. Trop Biomed. 2005, 22: 131-137. Nieuwhof GJ, Bishop SC: Costs of the major endemic diseases of sheep in Great Britain and the potential benefits of reduction in disease impact. Anim Sci. 2005, 81: 23-29. Sani RA, Gray GD, Baker RL: Worm Control for Small Ruminants in Tropical Asia. 2004, Canberra: ACIAR Monograph 113 Waller PJ, Dash KM, Barger IA, Le Jambre LF, Plant J: Anthelmintic resistance in nematode parasites of sheep: learning from the Australian experience. Vet Rec. 1995, 136: 411-413. 10.1136/vr.136.16.411. McLeod RS: Costs of major parasites to the Australian livestock industries. Int J Parasitol. 1995, 25: 1363-1367. 10.1016/0020-7519(95)00071-9. Vlassoff A, McKenna PB: Nematode parasites of economic importance in sheep in New Zealand. New Zeal J Zool. 1994, 21: 1-8. 10.1080/03014223.1994.9517971. Kaplan RM: Drug resistance in nematodes of veterinary importance: a status report. Trends Parasitol. 2004, 20: 477-481. 10.1016/j.pt.2004.08.001. Wolstenholme AJ, Fairweather I, Prichard R, Von Samson-Himmelstjerna G, Sangster NC: Drug resistance in veterinary helminths. Trends Parasitol. 2004, 20: 469-476. 10.1016/j.pt.2004.07.010. Bernstein J, Cochrane N, Hasha G, Kelch D, Leetmaa S, Mitchell L, Morath T, Normile MA: The European Union’s Common Agricultural Policy: Pressures for Change.http://www.google.fr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDcQFjAA&url=http%3A%2F%2Fers.usda.gov%2FersDownloadHandler.ashx%3Ffile%3D%2Fmedia%2F913260%2Fwrs992_002.pdf&ei=tmWpUsfpEqaI0AW_84HoBw&usg=AFQjCNFklKL3zU4mGHeab4sNzApX0n6UFA&bvm=bv.57967247,d.d2k&cad=rja, Getachew T, Dorchies P, Jacquiet P: Trends and challenges in the effective and sustainable control of Haemonchus contortus infection in sheep. Review. Parasite. 2007, 14: 3-14. 10.1051/parasite/2007141003. Torres-Acosta JFJ, Hoste H: Alternative or improved methods to limit gastro-intestinal parasitism in grazing sheep and goats. Small Ruminant Res. 2008, 77: 159-173. 10.1016/j.smallrumres.2008.03.009. Smith WD, Zarlenga DS: Developments and hurdles in generating vaccines for controlling helminth parasites of grazing ruminants. Vet Parasitol. 2006, 139: 347-359. 10.1016/j.vetpar.2006.04.024. Saul GR: Effects of two pasture systems on faecal nematode egg counts in breeding ewes. Aust Vet J. 1996, 74: 154-155. 10.1111/j.1751-0813.1996.tb14820.x. Hoste H, Torres-Acosta JFJ: Non chemical control of helminths in ruminants: adapting solutions for changing worms in a changing world. Vet Parasitol. 2011, 180: 144-154. 10.1016/j.vetpar.2011.05.035. Barger IA, Siale K, Banks DJ, Le Jambre LF: Rotational grazing for control of gastrointestinal nematodes of goats in a wet tropical environment. Vet Parasitol. 1994, 53: 109-116. 10.1016/0304-4017(94)90023-X. Eysker M, Bakker N, Kooyman FNJ, van der Linden D, Schrama C, Ploeger HW: Consequences of the unusually warm and dry summer of 2003 in The Netherlands: poor development of free living stages, normal survival of infective larvae and long survival of adult gastrointestinal nematodes of sheep. Vet Parasitol. 2005, 133: 313-321. 10.1016/j.vetpar.2005.05.058. González Garduño R, Cordero Ortega JC, Torres Hernández G, Arece García J, Mendoza de Gives P: Efecto del hipoclorito de sodio y extracto de cítricos en la reducción de la infestación con nematodos gastrointestinales resistentes a antihelmínticos en ovinos de pelo. Rev Mex Cienc Pecuarias. 2010, 1: 179-187. Larsen M: Biological control of nematode parasites in sheep. J Anim Sci. 2006, 84: E133-E139. Terrill TH, Larsen M, Samples O, Husted S, Miller JE, Kaplan RM, Gelaye S: Capability of the nematode-trapping fungus Duddingtonia flagrans to reduce infective larvae of gastrointestinal nematodes in goat feces in the southeastern United States: dose titration and dose time interval studies. Vet Parasitol. 2004, 120: 285-296. 10.1016/j.vetpar.2003.09.024. Paraud C, Hoste H, Lefrileux Y, Pommaret A, Paolini V, Pors I, Chartier C: Administration of Duddingtonia flagrans chlamydospores to goats to control gastro-intestinal nematodes: dose trials. Vet Res. 2005, 36: 157-166. 10.1051/vetres:2004060. Kloosterman A, Parmentier HK, Ploeger HW: Breeding cattle and sheep for resistance to gastrointestinal nematodes. Parasitol Today. 1992, 8: 330-335. 10.1016/0169-4758(92)90066-B. Woolaston RR, Baker RL: Prospects of breeding small ruminants for resistance to internal parasites. Int J Parasitol. 1996, 26: 845-855. Bisset SA, Morris CA, McEwan JC, Vlassof A: Breeding sheep in New Zealand that are less reliant on anthelmintics to maintain health and productivity. N Z Vet J. 2001, 49: 236-246. 10.1080/00480169.2001.36238. Kemper KE, Elwin RL, Bishop SC, Goddard ME, Woolaston RR: Haemonchus contortus and Trichostrongylus colubriformis did not adapt to long-term exposure to sheep that were genetically resistant or susceptible to nematode infections. Int J Parasitol. 2009, 39: 607-614. 10.1016/j.ijpara.2008.08.013. Lynch M, Walsh B: Genetics and Analysis of Quantitative Traits. 1998, Sunderland: Sinauer Associates Safari E, Fogarty NM, Gilmour AR: A review of genetic parameter estimates for wool, growth, meat and reproduction traits in sheep. Livest Prod Sci. 2005, 92: 271-289. 10.1016/j.livprodsci.2004.09.003. Bishop SC, Bairden K, McKellar QA, Park M, Stear MJ: Genetic parameters for faecal egg count following mixed, natural, predominantly Ostertagia circumcinta infection and relationships with live weight in young lambs. Anim Sci. 1996, 63: 423-428. 10.1017/S1357729800015319. McEwan JC, Dodds KG, Greer GJ, Bain WE, Duncan SJ, Wheeler R, Knowler KJ, Reid PJ, Green RS, Douch PGC: Genetic estimates for parasite resistance traits in sheep and their correlations with production traits. Proceeding of the 23rd New Zealand Society for Parasitology Conference. NZ J Zool. 1995, 22-177. Eady SJ, Woolaston RR, Ponzoni RW, Lewer RP, Raadsma HW, Swan AA: Resistance to nematode parasites in Merino sheep: correlation with production traits. Aust J Agric Res. 1998, 49: 1201-1211. 10.1071/A98069. McEwan JC, Mason P, Baker RL, Clarke JN, Hickey SM, Turner K: Effect of selection for productive traits on internal parasite resistance in sheep. Proc New Zeal Soc Anim Prod. 1992, 52: 53-56. Bisset SA, Vlassoff A, Morris CA, Southey BR, Baker RL, Parker AGH: Heritability and genetic correlations among faecal egg counts and productivity traits in Romney sheep. NZ J Agric Res. 1992, 35: 51-58. 10.1080/00288233.1992.10417701. Morris CA, Vlassoff A, Bissett SA, Baker RL, Watson TG, West CJ, Wheeler M: Continued selection of Romney sheep for resistance or susceptibility to nematode infection: estimates of direct and correlated responses. Anim Sci. 2000, 70: 17-27. Walkden-Brown SW, Eady SJ: Nutritional influences on the expression of genotypic resistance to gastrointestinal nematode infection in sheep. Aust J Exp Agric. 2003, 42: 1445-1454. Lee SH, Goddard ME, Visscher PM, van der Werf JHJ: Using the realized relationship matrix to disentangle confounding factors for the estimation of genetic variance components of complex traits. Genet Sel Evol. 2010, 42: 22-10.1186/1297-9686-42-22. Sallé G, Jacquiet P, Gruner L, Cortet J, Sauvé C, Prévot F, Grisez C, Bergeaud JP, Schibler L, Tircazes A, Francois D, Pery C, Bouvier F, Thouly JC, Brunel JC, Legarra A, Elsen JM, Bouix J, Rupp R, Moreno CR: A genome scan for QTL affecting resistance to Haemonchus contortus in sheep. J Anim Sci. 2012, 90: 4690-4705. 10.2527/jas.2012-5121. Lacroux C, Nguyen THC, Andreoletti O, Prevot F, Grisez C, Bergeaud J, Gruner L, Brunel JC, Francois D, Dorchies P, Jacquiet P: Haemonchus contortus (Nematoda: Trichostrongylidae) infection in lambs elicits an unequivocal Th2 immune response. Vet Res. 2006, 37: 607-622. 10.1051/vetres:2006022. Raynaud JP: Study of the efficiency of a quantitative coproscopic technic for the routine diagnosis and control of parasitic infestations of cattle, sheep, horses and swine. Ann Parasitol Hum Comp. 1970, 45: 321-342. Misztal I: Complex models, more data: simpler programming?.https://journal.interbull.org/index.php/ib/article/view/470/468, Christensen OF: Compatibility of pedigree-based and marker-based relationship matrices for single-step genetic evaluation. Genet Sel Evol. 2012, 44: 37-10.1186/1297-9686-44-37. Vitezica ZG, Aguilar I, Misztal I, Legarra A: Bias in genomic predictions for populations under selection. Genet Res. 2011, 93: 357-366. 10.1017/S001667231100022X. Quaas RL: Computing the diagonal elements and inverse of a large numerator relationship matrix. Biometrics. 1976, 32: 949-953. 10.2307/2529279. VanRaden PM: Efficient methods to compute genomic predictions. J Dairy Sci. 2008, 91: 4414-4423. 10.3168/jds.2007-0980. Klei B: Approximate variance for heritability estimates.http://nce.ads.uga.edu/html/projects/AI_SE_revised.pdf, Diaz-Francés E, Rubio FJ: On the existence of a normal approximation to the distribution of the ratio of two independent normal random variables. Stat Pap. 2013, 54: 309-323. 10.1007/s00362-012-0429-2. Fisher RA: Frequency distribution of the values of the correlation coefficient in samples of an indefinitely large population. Biometrika. 1915, 10: 507-521. Efron B, Tibshirani RJ: An Introduction to Bootstrap. 1993, New York: Chapman & Hall Tizard IR: Veterinary immunology: an introduction. 2012, St. Louis: Elsevier Greer AW: Trade-offs and benefits: implications of promoting a strong immunity to gastrointestinal parasites in sheep. Parasite Immunol. 2008, 30: 123-132. 10.1111/j.1365-3024.2008.00998.x. Liu SM, Smith TL, Briegel J, Murray A, Masters DG, Karlsson LJE, Palmer DG, Greeff JC, Besier RB, Gao SB: Comparing productive performance of nematode resistant Merino sheep with non-selected control. Livest Prod Sci. 2005, 97: 117-129. 10.1016/j.livprodsci.2005.03.006. Veerkamp RF, Mulder HA, Thompson R, Calus MP: Genomic and pedigree-based genetic parameters for scarcely recorded traits when some animals are genotyped. J Dairy Sci. 2011, 94: 4189-4197. 10.3168/jds.2011-4223. Pollott GE, Greeff JC: Genotype X environment interactions and genetic parameters for fecal egg count and production traits of Merino sheep. J Anim Sci. 2004, 82: 2840-2851.