Genetic diversity and malaria vaccine design, testing and efficacy: preventing and overcoming ‘vaccine resistant malaria’

Parasite Immunology - Tập 31 Số 9 - Trang 560-573 - 2009
Shannon L. Takala1, Christopher V. Plowe1,2
1Center for Vaccine Development
2Howard Hughes Medical Institute, University of Maryland School of Medicine, Baltimore, MD, USA

Tóm tắt

SummaryThe development of effective malaria vaccines may be hindered by extensive genetic diversity in the surface proteins being employed as vaccine antigens. Understanding of the extent and dynamics of genetic diversity in vaccine antigens is needed to guide rational vaccine design and to interpret the results of vaccine efficacy trials conducted in malaria endemic areas. Molecular epidemiological, population genetic, and structural approaches are being employed to try to identify immunologically relevant polymorphism in vaccine antigens. The results of these studies will inform choices of which alleles to include in multivalent or chimeric vaccines; however, additional molecular and immuno‐epidemiological studies in a variety of geographic locations will be necessary for these approaches to succeed. Alternative means of overcoming antigenic diversity are also being explored, including boosting responses to critical conserved regions of current vaccine antigens, identifying new, more conserved and less immunodominant antigens, and developing whole‐organism vaccines. Continued creative application and integration of tools from multiple disciplines, including epidemiology, immunology, molecular biology, and evolutionary genetics and genomics, will likely be required to develop broadly protective vaccines against Plasmodium and other antigenically complex pathogens.

Từ khóa


Tài liệu tham khảo

10.1093/genetics/149.1.189

10.1128/JCM.44.3.999-1017.2006

10.1097/01.inf.0000207484.52850.38

10.1371/journal.ppat.0030168

10.1086/339342

10.1371/journal.pctr.0010005

10.1016/j.vaccine.2009.03.014

10.1371/journal.pone.0004708

10.1084/jem.172.1.379

10.1590/S0074-02761992000700004

10.1128/IAI.70.9.5328-5331.2002

10.1084/jem.186.10.1689

10.4269/ajtmh.1998.58.211

10.1086/315424

10.1093/infdis/173.3.765

10.4049/jimmunol.173.1.666

10.1128/IAI.72.3.1557-1567.2004

10.1111/j.1365-3024.1992.tb00471.x

10.1016/0166-6851(93)90002-F

10.1016/0022-2836(87)90649-8

10.1016/S0166-6851(02)00237-2

Egan AF, 1995, Serum antibodies from malaria‐exposed people recognize conserved epitopes formed by the two epidermal growth factor motifs of MSP1(19), the carboxy‐terminal fragment of the major merozoite surface protein of Plasmodium falciparum, Infect Immun, 63, 456, 10.1128/iai.63.2.456-466.1995

10.1128/IAI.64.7.2716-2723.1996

10.4269/ajtmh.2001.64.204

Udhayakumar V, 1995, Identification of T and B cell epitopes recognized by humans in the C‐ terminal 42‐kDa domain of the Plasmodium falciparum merozoite surface protein (MSP)‐1, J Immunol, 154, 6022, 10.4049/jimmunol.154.11.6022

10.1371/journal.pmed.0040093

10.1016/S0378-1119(02)01180-0

10.1016/S0166-6851(98)00010-3

10.1016/S0378-1119(99)00069-4

10.1016/S0166-6851(03)00077-X

10.1186/1475-2875-7-93

10.1074/jbc.271.46.29446

10.1128/MCB.9.7.3151

10.1016/0166-6851(94)90096-5

10.1128/IAI.72.1.154-158.2004

10.1038/nature01107

10.1074/jbc.M311331200

10.1128/IAI.71.3.1416-1426.2003

10.1073/pnas.0802328105

10.1016/S0166-6851(99)00054-7

10.1016/S0166-6851(01)00229-8

10.1186/1475-2875-6-154

10.1016/S0166-6851(00)00250-4

10.1016/0166-6851(96)02583-2

Polley SD, 2003, Allele frequency‐based analyses robustly map sequence sites under balancing selection in a malaria vaccine candidate antigen, Genetics, 165, 555, 10.1093/genetics/165.2.555

10.1128/IAI.00170-08

10.1073/pnas.0501808102

10.1371/journal.ppat.1000273

10.1128/IAI.73.1.422-430.2005

10.1016/S0140-6736(04)16354-X

10.1016/j.vaccine.2004.05.031

10.4269/ajtmh.1994.51.730

10.4269/ajtmh.2001.65.100

10.1128/IAI.69.5.3286-3294.2001

10.1128/IAI.70.12.6948-6960.2002

10.1128/IAI.70.8.4471-4476.2002

10.1073/pnas.0701464104

10.1111/j.1365-2958.2003.03974.x

10.1016/j.pt.2007.12.002

10.1016/S0140-6736(04)17223-1

Beier JC, 1998, Malaria Parasite Biology, Pathogenesis, and Protection, 63

10.1126/science.6204383

10.1016/S0166-6851(02)00216-5

10.1073/pnas.94.24.13040

10.1126/science.2988126

Zhou Z, 2002, Antibody responses to repetitive epitopes of the circumsporozoite protein, liver stage antigen‐1, and merozoite surface protein‐2 in infants residing in a Plasmodium falciparum‐hyperendemic area of western Kenya. XIII. Asembo Bay Cohort Project, Am J Trop Med Hyg, 66, 7, 10.4269/ajtmh.2002.66.7

10.1084/jem.180.1.297

Sinnis P, 1996, Malaria Vaccine Development: a Multi‐Immune Response Approach, 17

10.1016/S0169-4758(99)01592-6

10.1016/S0166-6851(99)00221-2

De La Cruz VF, 1987, Sequence variation in putative functional domains of the circumsporozoite protein of Plasmodium falciparum. Implications for vaccine development, J Biol Chem, 262, 11935, 10.1016/S0021-9258(18)45298-2

Doolan DL, 1992, Geographically restricted heterogeneity of the Plasmodium falciparum CSP: relevance for vaccine development, Infect Immun, 60, 675, 10.1128/iai.60.2.675-682.1992

10.1073/pnas.85.4.1199

10.1128/JCM.44.4.1229-1235.2006

10.4269/ajtmh.1994.51.659

10.4049/jimmunol.175.6.3935

10.1016/0166-6851(89)90159-X

10.1016/0166-6851(87)90073-9

10.4269/ajtmh.1992.47.844

10.1016/j.ijpara.2006.09.001

De La Cruz VF, 1988, Lack of cross‐reactivity between variant T cell determinants from malaria circumsporozoite protein, J Immunol, 141, 2456, 10.4049/jimmunol.141.7.2456

10.1002/j.1460-2075.1988.tb03104.x

10.1002/eji.1830270819

10.1002/eji.1830240627

10.1186/1475-2875-6-161

10.1016/S0166-6851(00)00245-0

10.1016/S0166-6851(97)00067-4

10.1086/509806

10.1016/S0166-6851(97)00038-8

10.1016/S1383-5769(02)00088-0

10.1046/j.1365-3024.2000.00324.x

10.1038/81366

10.1128/IAI.68.1.227-232.2000

10.1007/s00436-007-0737-y

10.1016/0166-6851(84)90124-5

10.1016/S0166-6851(01)00386-3

10.1016/0166-6851(94)00193-Q

10.1038/76272

10.1016/j.meegid.2006.08.002

10.1016/S0378-1119(99)00472-2

10.1093/genetics/158.4.1505

Hughes AL, 1991, Circumsporozoite protein genes of malaria parasites (Plasmodium spp.): evidence for positive selection on immunogenic regions, Genetics, 127, 345, 10.1093/genetics/127.2.345

Coulibaly D, 2002, Impact of preseason treatment on incidence of falciparum malaria and parasite density at a site for testing malaria vaccines in Bandiagara, Mali, Am J Trop Med Hyg, 67, 604, 10.4269/ajtmh.2002.67.604

Dent AE, 2007, A polymerase chain reaction/ligase detection reaction fluorescent microsphere assay to determine Plasmodium falciparum MSP‐119 haplotypes, Am J Trop Med Hyg, 77, 250, 10.4269/ajtmh.2007.77.250

10.1002/1097-0258(20010130)20:2<263::AID-SIM660>3.0.CO;2-1

10.1016/j.vaccine.2008.09.004

10.1074/jbc.M610562200

10.1186/1475-2875-7-184

10.1097/QCO.0b013e32816b5cc2

10.1016/j.tibtech.2004.12.008

10.1002/pmic.200800194

10.1016/S0020-7519(01)00184-9

10.1128/IAI.64.9.3833-3844.1996

10.4161/hv.2.1.2437

10.1016/j.ijpara.2007.02.007

Luke TC, 2003, Rationale and plans for developing a non‐replicating, metabolically active, radiation‐attenuated Plasmodium falciparum sporozoite vaccine, J Exp Biol, 206, 3803, 10.1242/jeb.00644

10.1016/S0140-6736(02)09784-2

Uilenberg G, 1977, Studies on Theileriidae (Sporozoa) in Tanzania. X. A large‐scale field trial on immunization against cattle Theileriosis, Tropenmed Parasitol, 28, 499

10.1126/science.318.5856.1544

10.2471/BLT.07.050633