Genetic diversity analysis of cultivated and wild grapevine (Vitis vinifera L.) accessions around the Mediterranean basin and Central Asia

Springer Science and Business Media LLC - Tập 18 - Trang 1-14 - 2018
Summaira Riaz1, Gabriella De Lorenzis2, Dianne Velasco3, Anne Koehmstedt4, David Maghradze5, Zviad Bobokashvili6, Mirza Musayev6, Goran Zdunic7, Valerie Laucou8, M. Andrew Walker1, Osvaldo Failla2, John E. Preece4, Mallikarjuna Aradhya4, Rosa Arroyo-Garcia9
1Department of Viticulture and Enology, University of California, Davis, USA
2Department of Agricultural and Environmental Sciences, Milan, Italy
3Plant Sciences Department, UC Davis, Davis, USA
4USDA-ARS, National Clonal Germplasm Repository, University of California, Davis, USA
5Institute of Horticulture, Viticulture, and Oenology, Agricultural University of Georgia, Tbilisi, Georgia
6Department of Fruit Crops, Genetic Resources Institute, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
7Institute for Adriatic Crops and Karst Reclimation, Split, Croatia
8INRA UMR AGAP, Montpellier, France
9Dpto. Biotecnología, CBGP-INIA, Madrid, Spain

Tóm tắt

The mountainous region between the Caucasus and China is considered to be the center of domestication for grapevine. Despite the importance of Central Asia in the history of grape growing, information about the extent and distribution of grape genetic variation in this region is limited in comparison to wild and cultivated grapevines from around the Mediterranean basin. The principal goal of this work was to survey the genetic diversity and relationships among wild and cultivated grape germplasm from the Caucasus, Central Asia, and the Mediterranean basin collectively to understand gene flow, possible domestication events and adaptive introgression. A total of 1378 wild and cultivated grapevines collected around the Mediterranean basin and from Central Asia were tested with a set of 20 nuclear SSR markers. Genetic data were analyzed (Cluster analysis, Principal Coordinate Analysis and STRUCTURE) to identify groups, and the results were validated by Nei’s genetic distance, pairwise FST analysis and assignment tests. All of these analyses identified three genetic groups: G1, wild accessions from Croatia, France, Italy and Spain; G2, wild accessions from Armenia, Azerbaijan and Georgia; and G3, cultivars from Spain, France, Italy, Georgia, Iran, Pakistan and Turkmenistan, which included a small group of wild accessions from Georgia and Croatia. Wild accessions from Georgia clustered with cultivated grape from the same area (proles pontica), but also with Western Europe (proles occidentalis), supporting Georgia as the ancient center of grapevine domestication. In addition, cluster analysis indicated that Western European wild grapes grouped with cultivated grapes from the same area, suggesting that the cultivated proles occidentalis contributed more to the early development of wine grapes than the wild vines from Eastern Europe. The analysis of genetic relationships among the tested genotypes provided evidence of genetic relationships between wild and cultivated accessions in the Mediterranean basin and Central Asia. The genetic structure indicated a considerable amount of gene flow, which limited the differentiation between the two subspecies. The results also indicated that grapes with mixed ancestry occur in the regions where wild grapevines were domesticated.

Tài liệu tham khảo

Vivier MA, Pretorius IS. Genetically tailored grapevines for the wine industry. Trends Biotechnol. 2002;20:472–8. Zohary D, Hopf M. Domestication of plants in the old world. 3rd ed. New York: Oxford University Press; 2000. Levadoux L. Les populations sauvages et cultivées de Vitis vinifera L. Annl Amellior Plantes. 1956;1:59–118. Zohary D. Domestication of the grapevine Vitis vinifera L. in the Near East. In: Mc Govern PE, Fleming SJ, Katz SH, editors. The Origins and Ancient History of Wine. New York: Gordon and Breach Sciences Publisher; 1995. p. 23–30. Terral JF, Tabard E, Bouby L, Ivorra S, Pastor T, Figueiral I, Picq S, Chevance JB, Jung C, et al. Evolution and history of grapevine (Vitis vinifera) under domestication: new morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Ann Bot. 2010;105:443–55. Cipriani G, Spadotto A, Jurman I, Di Gaspero G, Crespan M, Meneghetti S, Frare E, Vignani R, Cresti M, Morgante M, Pezzotti M, Pe E, Policriti A, Testolin R. The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin. Theor Appl Genet. 2010;121:1569–85. Laucou V, Lacombe T, Dechesne F, Siret R, Bruno JP, Dessup M, Dessup T, Ortigosa P, Parra P, Roux C, Santoni S, Varés D, Pèros JP, Boursiquot JM, This P. High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theor Appl Genet. 2011;122:1233–45. De Andrés MT, Benito A, Pérez-Rivera G, et al. Genetic diversity of wild grapevine populations in Spain and their genetic relationships with cultivated grapevines. Mol Ecol. 2012;21:800–16. Lacombe T, Boursiquot JM, Laucou V, Di Vecchi-Staraz M, Péros JP, This P. Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.). Theor Appl Genet. 2013;126:401–14. Bacilieri R, Lacombe T, Le Cunff L, Di Vecchi-Staraz M, Laucou V, Genna B, Peros JP, This P, Boursiquot JM. Genetic structure in cultivated grapevines is linked to geography and human selection. BMC Plant Biol. 2013; https://doi.org/10.1186/1471-2229-13-25. Emanuelli F, Lorenzi S, Grzeskowiak L, Catalano V, Stefanini M, Troggio M, et al. Genetic diversity and population structure assessed by SSR and SNP markers in large germplasm collection of grape. BMC Plant Biol. 2013;13:39. Imazio S, Maghradze D, Lorenzis G, Bacilieri R, Laucou V, This P, et al. From the cradle of grapevine domestication: molecular overview and description of Georgian grapevine (Vitis vinifera L.) germplasm. Tree Genet Genomes. 2013;9:641–58. Negrul AM. Origin of cultivated grapevine and its classification. In: Frolov-Bagreev AM, editor. Ampelography of the Soviet Union. Moscow: Publisher “Pishchepromizdat”; 1946. p. 159–216. (In Russian). McGovern PE. Ancient Wine.The search for the origins of viniculture. 1st ed. Princeton: Princeton University Press; 2003. This P, Lacombe T, Thomas MR. Historical origins and genetic diversity of wine grapes. Trends Genet. 2006;22:511–9. Forni G. The origin of “old world” viticulture. In: Maghradze D, Rustioni L, Scienza A, Turok J, Failla O, editors. Caucasus and northern Black Sea region Ampelography. Vitis, special issue; 2012. p. 27–38. Failla O. East-west collaboration for grapevine diversity exploration and mobilization of adaptive traits for breeding: a four years story. Vitis. 2015;54:1–4. Maul E, Töpfer R, Carka F, Cornea V, Crespan M, Dallakyan M, et al. Identification and characterization of grapevine genetic resources maintained in eastern European collections. Vitis. 2015;54:5–12. Ellstrand NC, Heredia SM, Leak-Garcia JA, Heraty JM, Burger JC, Yao L, Nohzadeh-Malakshah S, Ridley CE. Crops gone wild: evolution of weeds and invasive from domesticated ancestors. Evol Appl. 2010;3:494–504. Coleman C, Copetti D, Cipriani G, Hoffmann S, Kozma P, Kovács L, Morgante M, Testolin R, Di Gaspero G. The powdery mildew resistance gene REN1 co-segregates with an NBS-LRR gene cluster in two central Asian grapevines. BMC Genet. 2009;10:89. Cambrollé J, García JL, Ocete R, Figueroa ME, Cantos M. Growth and photosynthetic responses to copper in wild grapevine. Chemosphere. 2013;93:294–301. Arroyo-García R, Ruiz-García L, Bolling L, Ocete R, Lopez MA, et al. Multiple origins of cultivated grapevine (Vitis vinifera L. ssp sativa) based on chloroplast DNA polymorphims. Mol Ecol. 2006;15:3707–14. Emanuelli F, Battilana J, Costantini L, Le Cunff L, This P, Grando MS. A candidate gene association study for Muscat flavor in grapevine Vitis vinifera L. BMC Plant Biol. 2010;10:241. Riaz S, Boursiquot JM, Dangl GS, Lacombe T, Laucou V, Tenscher AC, Walker MA. Identification of mildew resistance in wild and cultivated central Asian grape germplasm. BMC Plant Biol. 2013;13:149. Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, Aradhya MK, et al. Genetic structure and domestication history of the grape. PNAS. 2011;108:3457–8. Grassi F, Labra M, Imazio S, Ocete R, Failla O, Scienza A, Sala F. Phylogeographical structure and conservation genetics of wild grapevine. Conserv Genet. 2006;7:837–45. Ekhvaia J, Akhalkatsi M. Morphological variation and relationships of Georgian populations of Vitis vinifera L. subsp.sylvestris (C.C. Gmel.) Hegi. Flora. 2010;205:608–17. Biagini B, De Lorenzis G, Imazio S, Failla O, Scienza A. Italian wild grapevine population: insights into eco-geographical aspects and genetic structure. Tree Genet Genomes. 2014;10:1369. Zdunić J, Maul E, Hančević K, Leko M, Butorac L, Mucalo A, Radić T, Šimon S, Budić-Leto I, Mihaljević M-Z, Maletić E. Genetic diversity of wild grapevine (Vitis vinifera subsp. sylvestris Gmel Hegi) in the eastern Adriatic region. Am J Enol Vitic. 2017;68:252–7. Battilana J, Lorenzi S, Moreira FM, Moreno-Sanz P, Failla O, Emanuelli F, Grando MS. Linkage mapping and molecular diversity at the flower sex locus in wild and cultivated grapevine reveal a prominent SSR haplotype in hermaphrodite plants. Mol Biotechnol. 2013;54:1031–7. Nei M. Analysis of gene diversity in subdivided populations. PNAS. 1973;70:3321–3. Peakall R, Smouse PE. GenAlEx 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006;6:288–95. Weir BS, Cockerham C. Estimating F-statistics for the analysis of population genetics. Evolution. 1984;38:1358–70. Goudet J. FSTAT, a program to estimate and test gene diversities and fixation indices (version 29.3). 2001. Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol Ecol Resour. 2010;10:564–7. Kalinowski ST. Hp-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes. 2005;5:187–9. Barton NH, Slatkin M. A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity. 1986;56:409–15. Raymond M, Rousset F. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Heredity. 1995;86:248–9. Kamvar ZN, Brooks JC, Grünwald NJ. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front Genet. 2015;6:208. R Core Team. R: A language and environment for statistical computing. Vienna. http://www.R-project.org/: R Foundation for Statistical Computing; 2014. Nei M. Genetic distance between populations. Amer Nat. 1972;106:283–392. Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–90. Jombart T. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24:1403–5. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978;89:583–90. Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distance among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992;131:479–91. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2003;164:1567–87. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611–20. Benito A, Muñoz-Organero G, Ocete R, García-Muñoz S, López MA, Arroyo-Garcia R, Cabello F. An ex situ ampelographical characterization of wild Vitis vinifera from fifty-one Spanish populations. Austral J Grape Wine Res. 2017;23:143–52. https://doi.org/10.1111/ajgw.12250. Biagini B, Imazio S, Scienza A, Failla O, De Lorenzis G. Renewal of wild grapevine (Vitis vinifera L. subsp. sylvestris (Gmelin) Hegi) populations through sexual pathway: some Italian case studies. Flora. 2016;219:85–93. Antcliff AJ. Inheritance of sex in Vitis. Ann Amel Plant. 1980;30:113–22. Sefc KM, Lopes MS, Lefort F, Botta R, Roubelakis-Angelakis KA, Ibáñez J, Pejić I, Wagner HW, Glössl J, Steinkellner H. Microsatellite variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theor Appl Genet. 2000;100:498–505. Aradhya MK, Dang GS, Prins BH, Boursiquot JM, Walker MA, Meredith CP, Simon CJ. Genetic structure and differentiation in cultivated grape Vitis vinifera L. Genet Res. 2003;81:179–92. De Lorenzis G, Chipashvili R, Failla O, Maghradze D. Study of genetic variability in Vitis vinifera L. germplasm by high-throughput Vitis18kSNP array: the case of Georgian genetic resources. BMC Plant Biol. 2015;15:154. Marrano A, Grzeskowiak L, Moreno Sanz P, Lorenzi S, Prazzoli ML, Arzumanov A, Amanova A, Failla O, Maghradze D, Grando MS. Genetic diversity and relationships in the grapevine germplasm collection from Central Asia. Vitis. 2015;54:233–7. Grassi F, Labra M, Imazio S, Spada A, Sgorbati S, Scienza A, Sala F. Evidence of a secondary grapevine domestication Centre detected by SSR analysis. Theor Appl Genet. 2003;107:1315–20. Ergul A, Perez-Rivera G, Soybelezoglu G, Kazan K, Arroyo-Garcia R. Genetic diversity in Anatolian wild grapes (Vitis vinifera subsp. sylvestris) estimated by SSR markers. Plant Genet Resour. 2011;9:375–83. Regner F, Stadlbauer A, Eisenheld C, Kaserer H. Genetic relationships among pinots and related cultivars. Am J Enol Vitic. 2000;51:7–14. Lopes MS, Mendonça D, Rodrigues dos Santos M, Eiras-Dias JE, da Câmara Machado A. New insights on the genetic basis of Portuguese grapevine and on grapevine domestication. Genome. 2009;52:790–800. Askri H, Daldoul S, Ben Ammar A, Rejeb S, Jardak R, Rejeb MN, Mliki A, Ghorbel A. Short-term response of wild grapevines (Vitis vinifera L. ssp. sylvestris) to NaCl salinity exposure: changes of some physiological and molecular characteristics. Acta Physiol Plant. 2012; https://doi.org/10.1007/s11738-011-0892-8. Duan D, Halter D, Baltenweck R, Tisch C, Tröster V, Kortekamp A, Hugueney P, Nick P. Genetic diversity of stilbene metabolism in Vitis sylvestris. J Exp Bot. 2015; https://doi.org/10.1093/jxb/erv137. Bitsadze N, Aznarashvili M, Vercesi A, Chipashvili R, Failla O, Maghradze D. Screening of Georgian grapevine germplasm for susceptibility to downy mildew (Plasmopara viticola). Vitis. 2015;54:193–6. Toffolatti SL, Maddalena G, Salomoni D, Maghradze D, Bianco PA, Failla O. Evidence of resistance to the downy mildew agent Plasmopara viticola in the Georgian Vitis vinifera germplasm. Vitis. 2016;55:121–8. Revilla E, Carrasco D, Benito A, Arroyo-Garcia R. Anthocyanin composition of several wild grape accessions. Am J Enol Vitic. 2010;61:636–42. Maghradze D, Rustioni L, Scienza A, Failla O. Phenological diversity of Georgian grapevine cultivars in northern Italy. J Amer Pomolog Soc. 2012;66:56–67.