Genetic Background and Antibiotic Resistance Profiles of K. pneumoniae NDM-1 Strains Isolated from UTI, ABU, and the GI Tract, from One Hospital in Poland, in Relation to Strains Nationally and Worldwide
Tóm tắt
In recent years, there has been an observed increase in infections caused by carbapenem-resistant Klebsiella pneumonia (Kp) strains. The aim of this study was the phenotypic and genotypic analysis of eight K. pneumoniae NDM (Kp NDM) isolates, recovered in Poland during the years 2016 and 2018 from seven patients with urinary tract infections (UTIs), asymptomatic bacteriuria (ABU), or colonization of the gut. PCR melting profile genotyping indicated a close relationship between the strains derived from 2018, which were not related to the strain isolated in 2016. WGS results were analyzed in relation to international Kp isolates. Clonal and phylogenetic analyses were performed based on multilocus sequence typing (MLST) and single nucleotide polymorphisms (SNPs) of the core genome. The metallo-β-lactamase was assigned to the NDM-1 type and the sequence was identified as ST11. Eleven antimicrobial resistance genes were detected, mostly from plasmid contigs. Unprecedented profiles of plasmid replicons were described with the IncFII/pKPX-1 dominant replicon. In terms of the KL24 and O2v1 capsular antigen profiles, these isolates corresponded to Greek strains. Strains isolated from UTI, ABU, and colonization GI tract patients were not carrying environment-specific virulence genes. Based on the assessment of strain relationships at the genome level and their direction of evolution, the international character of the sublines was demonstrated, with a documented epidemic potential in Poland and Greece. In conclusion, some groups of patients, e.g., renal transplant recipients or those with complicated UTIs, who are frequently hospitalized and undergoing antibiotic therapy, should be monitored not only for the risk of UTI, but also for colonization by Kp NDM strains.
Từ khóa
Tài liệu tham khảo
Wyres, 2016, Klebsiella pneumoniae Population Genomics and Antimicrobial-Resistant Clones, Trends Microbiol., 24, 944, 10.1016/j.tim.2016.09.007
Magiorakos, 2012, Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance, Clin. Microbiol. Infect., 18, 268, 10.1111/j.1469-0691.2011.03570.x
Albiger, 2015, European Survey of Carbapenemase-Producing Enterobacteriaceae (EuSCAPE) working group. Carbapenemase-producing Enterobacteriaceae in Europe: Assessment by national experts from 38 countries, May 2015, Eurosurveillance, 20, 30062, 10.2807/1560-7917.ES.2015.20.45.30062
Khan, 2017, Structure, Genetics and Worldwide Spread of New Delhi Metallo-β-lactamase (NDM): A threat to public health, BMC Microbiol., 17, 1, 10.1186/s12866-017-1012-8
Yong, 2009, Characterization of a new metallo-β-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India, Antimicrob. Agents Chemother., 53, 5046, 10.1128/AAC.00774-09
Kumarasamy, 2010, Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study, Lancet Infect. Dis, 10, 597, 10.1016/S1473-3099(10)70143-2
Deshpande, 2010, New Delhi metallo-β lactamase (NDM-1) in Enterobacteriaceae: Treatment options with carbapenems compromised, J. Assoc. Physicians India, 58, 147
Juhas, 2009, Genomic islands: Tools of bacterial horizontal gene transfer and evolution, FEMS Microbiol. Rev., 33, 376, 10.1111/j.1574-6976.2008.00136.x
Frost, 2005, Mobile genetic elements: The agents of open source evolution, Nat. Rev. Microbiol., 3, 722, 10.1038/nrmicro1235
Chatterjee, 2016, Carbapenem Resistance in Acinetobacter baumannii and Other Acinetobacter spp. causing neonatal sepsis: Focus on NDM-1 and Its Linkage to ISAba125, Front. Microbiol., 7, 1126, 10.3389/fmicb.2016.01126
Bahr, 2016, Membrane anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase, Nat. Chem. Biol., 12, 516, 10.1038/nchembio.2083
Bahr, 2017, Clinical Evolution of New Delhi Metallo-β-Lactamase (NDM) Optimizes resistance under Zn(II) deprivation, Antimicrob. Agents Chemother., 62, e01849
Fuursted, 2012, Virulence of a Klebsiella pneumoniae strain carrying the New Delhi metallo-β-lactamase-1 (NDM-1), Microbes Infect., 14, 155, 10.1016/j.micinf.2011.08.015
Martin, 2018, Identification of pathogenicity-associated loci in Klebsiella pneumoniae from hospitalized patients, Msystems, 3, e00015, 10.1128/mSystems.00015-18
Paczosa, 2016, Klebsiella pneumoniae: Going on the offense with a strong defense, Microbiol. Mol. Biol. Rev., 80, 629, 10.1128/MMBR.00078-15
Pan, 2015, Genetic analysis of capsular polysaccharide synthesis gene clusters in 79 capsular types of Klebsiella spp, Sci. Rep., 5, 15573, 10.1038/srep15573
Walker, 2019, Klebsiella pneumoniae regulatory mutant has reduced capsule expression but retains hypermucoviscosity, MBio, 26, e00089
Wacharotayankun, 1993, Enhancement of extracapsular polysaccharide synthesis in Klebsiella pneumoniae by RmpA2, which shows homology to NtrC and FixJ, Infect. Immun., 61, 3164, 10.1128/iai.61.8.3164-3174.1993
(2020, June 20). NCBI Pathogen Detection Reference Gene Catalog. BlaNDM, Available online: http://www.ncbi.nlm.nih.gov/pathogens/isolates#/refgene/blaNDM.
Baraniak, 2016, NDM-producing Enterobacteriaceae in Poland, 2012-14: Inter-regional outbreak of Klebsiella pneumoniae ST11 and sporadic cases, J. Antimicrob. Chemother., 71, 85, 10.1093/jac/dkv282
Kondratyeva, 2017, Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance, FEMS Microbiol. Rev., 41, 252, 10.1093/femsre/fux013
Moubareck, 2018, Clonal emergence of Klebsiella pneumoniae ST14 co-producing OXA-48-type and NDM carbapenemases with high rate of colistin resistance in Dubai, United Arab Emirates, Int. J. Antimicrob. Agents, 52, 90, 10.1016/j.ijantimicag.2018.03.003
Chen, 2014, Carbapenemase-producing Klebsiella pneumoniae: Molecular and genetic decoding, Trends Microbiol., 22, 686, 10.1016/j.tim.2014.09.003
Giske, 2012, Diverse sequence types of Klebsiella pneumoniae contribute to the dissemination of blaNDM-1 in India, Sweden, and the United Kingdom, Antimicrob. Agents Chemother., 56, 2735, 10.1128/AAC.06142-11
Baraniak, 2019, Towards endemicity: Large-scale expansion of the NDM-1-producing Klebsiella pneumoniae ST11 lineage in Poland, 2015-16, J. Antimicrob. Chemother., 74, 3199, 10.1093/jac/dkz315
Żabicka, D., Bojarska, K., Herda, M., Literacka, E., Kozińska, A., Hryniewicz, W., Skoczyńska, A., Baraniak, A., Machulska, M., and Urbanowicz, P. (2017, November 25). Pałeczki Jelitowe Enterobacteriaceae Wytwarzające Karbapenemazy (CPE) w Polsce-Sytuacja w 2016. Krajowy Ośrodek Referencyjny ds. Lekowrażliwości Drobnoustrojów. Available online: http://www.korld.edu.pl/pdf/CPEraport2016.pdf.
Żabicka, D., Literacka, E., Gniadkowski, M., and Hryniewicz, W. (2017, December 20). Raport Krajowego Ośrod-ka Referencyjnego ds. Lekowrażliwości Drobnoustrojów. Występowanie Entero- bacteriaceae (głównie Klebsiella pneumoniae), wytwarzających karbapenemazę New Delhi (NDM) na terenie Polski w okresie I–III kwartał 2017 roku. KORLD. Available online: http://www.korld.edu.pl/pdf/Raport_NDM_18-12-2017.
Karuthu, 2012, Common infections in kidney transplant recipients, Clin. J. Am. Soc. Nephrol., 7, 2058, 10.2215/CJN.04410512
Ko, 1994, Infections after renal transplantation, Transplant. Proc., 26, 2072
2008, Urinary tract infection in renal transplant recipients, Eur. J. Clin. Invest, 38, 58, 10.1111/j.1365-2362.2008.02014.x
Vidal, 2012, Bacterial urinary tract infection after solid organ transplantation in the RESITRA cohort, Transpl. Infect. Dis., 14, 595, 10.1111/j.1399-3062.2012.00744.x
Izdebski, 2020, Genomic background of the Klebsiella pneumoniae NDM-1 outbreak in Poland, 2012–18, J. Antimicrob. Chemother., 75, 3156, 10.1093/jac/dkaa339
Bolger, 2014, Trimmomatic: A flexible trimmer for Illumina sequence data, Bioinformatics, 30, 2114, 10.1093/bioinformatics/btu170
Stojowska, 2009, Usefulness of PCR melting profile method for genotyping analysis of Klebsiella oxytoca isolates from patients of a single hospital unit, Pol. J. Microbiol., 58, 247
Krawczyk, 2019, Host and pathogen factors in Klebsiella pneumoniae upper urinary tract infections in renal transplant patients, J. Med. Microbiol., 68, 382, 10.1099/jmm.0.000942
Deng, 2013, Assembling genomes and mini-metagenomes from highly chimeric reads, Research in Computational Molecular Biology. RECOMB 2013. Lecture Notes in Computer Science, 7821, 158
Mikheenko, 2018, Versatile genome assembly evaluation with QUAST-LG, Bioinformatics, 34, i142, 10.1093/bioinformatics/bty266
Seemann, 2014, Prokka: Rapid prokaryotic genome annotation, Bioinformatics, 30, 2068, 10.1093/bioinformatics/btu153
Page, 2015, Roary: Rapid large-scale prokaryote pan genome analysis, Bioinformatics, 31, 3691, 10.1093/bioinformatics/btv421
Edgar, 2004, MUSCLE: Multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 32, 1792, 10.1093/nar/gkh340
Stamatakis, 2014, RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, 30, 1312, 10.1093/bioinformatics/btu033
Yu, 2017, Ggtree: An R package for visualization and annotation of phylogenetic trees with their covariates and other associated data, Methods Ecol. Evol., 8, 28, 10.1111/2041-210X.12628
Lees, 2018, RhierBAPS: An R implementation of the population clustering algorithm hierBAPS, Wellcome Open Res., 3, 93, 10.12688/wellcomeopenres.14694.1
(2020, June 25). MLST. Available online: https://github.com/tseemann/mlst.
(2020, June 25). Snippy, Rapid Haploid Variant Calling and Core Genome Alignment. Available online: https://github.com/tseemann/snippy.
SnpEff (2020, June 25). Genomic Variant Annotations and Functional Effect Prediction Toolbox. Available online: http://snpeff.sourceforge.net.
Zankari, 2012, Identification of acquired antimicrobial resistance genes, J. Antimicrob. Chemother., 67, 2640, 10.1093/jac/dks261
Jolley, 2018, Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications, Wellcome Open Res., 3, 124, 10.12688/wellcomeopenres.14826.1
Wick, 2018, Kaptive Web: User-friendly capsule and lipopolysaccharide serotype prediction for Klebsiella genomes, BioRxiv, 56, e00197
Carattoli, 2014, In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing, Antimicrob. Agents Chemother., 58, 3895, 10.1128/AAC.02412-14
R Core Team (2021, July 19). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available online: http://www.R-project.org/.
Farzand, 2019, ICEKp2: Description of an integrative and conjugative element in Klebsiella pneumoniae, co-occurring and interacting with ICEKp1, Sci. Rep., 9, 13892, 10.1038/s41598-019-50456-x
(2020, June 25). RFPlasmid. Available online: https://github.com/aldertzomer/RFPlasmid.
Ko, 2017, The contribution of capsule polysaccharide genes to virulence of Klebsiella pneumoniae, Virulence, 8, 485, 10.1080/21505594.2016.1240862
Cheng, 2010, RmpA regulation of capsular polysaccharide biosynthesis in Klebsiella pneumoniae CG43, J. Bacteriol., 192, 3144, 10.1128/JB.00031-10
Messai, 2013, Virulence profiles and antibiotic susceptibility patterns of Klebsiella pneumoniae strains isolated from different clinical specimens, Pathol. Biol., 61, 209, 10.1016/j.patbio.2012.10.004
Komarnicka, 2011, Urinary tract infections in renal transplant recipients, Transplant. Proc., 43, 2985, 10.1016/j.transproceed.2011.07.010
Poirel, 2013, Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases, Lancet Infect. Dis., 13, 785, 10.1016/S1473-3099(13)70190-7
Taglietti, 2013, Carbapenemase-producing Klebsiella pneumoniae-related mortality among solid organ-transplanted patients: Do we know enough?, Transpl. Infect. Dis., 15, E164, 10.1111/tid.12085
Wilkowski, 2016, Successful treatment of urinary tract infection in kidney transplant recipients caused by multiresistant Klebsiella pneumoniae producing New Delhi metallo-β-lactamase (NDM-1) with strains genotyping, Transplant. Proc., 48, 1576, 10.1016/j.transproceed.2016.01.060
Linares, 2010, Klebsiella pneumoniae infection in solid organ transplant recipients: Epidemiology and antibiotic resistance, Transplant. Proc., 42, 2941, 10.1016/j.transproceed.2010.07.080
Zdziarski, J., Brzuszkiewicz, E., Wullt, B., Liesegang, H., Biran, D., Voigt, B., Grönberg-Hernandez, J., Ragnarsdottir, B., Hecker, M., and Ron, E.Z. (2010). Host imprints on bacterial genomes--rapid, divergent evolution in individual patients. PLoS Pathog., 6.
Stork, 2018, Characterization of asymptomatic bacteriuria Escherichia coli isolates in search of alternative strains for efficient bacterial interference against uropathogens, Front. Microbiol., 9, 214, 10.3389/fmicb.2018.00214
Wu, 2019, NDM metallo-β-lactamases and their bacterial producers in Health Care Settings, Clin. Microbiol. Rev., 32, e00115, 10.1128/CMR.00115-18
Gao, 2020, The transferability and evolution of NDM-1 and KPC-2 co-producing Klebsiella pneumoniae from clinical settings, EBioMedicine, 51, 102599, 10.1016/j.ebiom.2019.102599
Joseph, L., Merciecca, T., Forestier, C., Balestrino, D., and Miquel, S. (2021). From Klebsiella pneumoniae Colonization to Dissemination: An Overview of Studies Implementing Murine Models. Microorganisms, 9.
Hammerum, 2010, Global spread of New Delhi metallo-β-lactamase 1, Lancet Infect. Dis., 10, 829, 10.1016/S1473-3099(10)70276-0
Bonomo, 2011, New Delhi metallo-β-lactamase and multidrug resistance: A global SOS?, Clin. Infect. Dis., 52, 485, 10.1093/cid/ciq179
Pitout, 2015, Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance, Antimicrob. Agents Chemother., 59, 5873, 10.1128/AAC.01019-15
Estellat, 2014, Acquisition of carbapenemase-producing Enterobacteriaceae by healthy travellers to India, France, February 2012 to March 2013, Eurosurveillance, 19, 20768
Fiett, 2014, The first NDM metallo-β-lactamase-producing Enterobacteriaceae isolate in Poland: Evolution of IncFII-type plasmids carrying the bla(NDM-1) gene, Antimicrob. Agents Chemother., 58, 1203, 10.1128/AAC.01197-13
Izdebski, 2015, NDM-1- or OXA-48-producing Enterobacteriaceae colonising Polish tourists following a terrorist attack in Tunis, March 2015, Eurosurveillance, 20, 21150, 10.2807/1560-7917.ES2015.20.23.21150
Clegg, S., and Murphy, C.N. (2016). Epidemiology and virulence of Klebsiella pneumoniae. Microbiol. Spectr., 4.
Wysocka, M., Zamudio, R., Oggioni, M.R., Gołębiewska, J., Dudziak, A., and Krawczyk, B. (2020). The new Klebsiella pneumoniae ST152 variants with hypermucoviscous phenotype isolated from renal transplant recipients with asymptomatic bacteriuria-genetic characteristics by WGS. Genes, 11.
Schroll, C., Barken, K.B., Krogfelt, K.A., and Struve, C. (2010). Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol., 10.
Blackburn, 2013, Multi-functional analysis of Klebsiella pneumoniae fimbrial types in adherence and biofilm formation, Virulence, 4, 129, 10.4161/viru.22974
Phillips, 2012, Molecular Mechanisms of Biofilm Infection: Biofilm Virulence Factors, Adv. Wound Care, 1, 109, 10.1089/wound.2011.0301
Lawlor, 2007, Yersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infection, Infect. Immun., 75, 1463, 10.1128/IAI.00372-06
Bachman, 2011, Klebsiella pneumoniae yersiniabactin promotes respiratory tract infection through evasion of lipocalin 2, Infect. Immun., 79, 3309, 10.1128/IAI.05114-11
Holt, 2015, Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health, Proc. Natl. Acad. Sci. USA, 112, E3574, 10.1073/pnas.1501049112
Hancock, 2007, Global gene expression profiling of asymptomatic bacteriuria Escherichia coli during biofilm growth in human urine, Infect. Immun., 75, 966, 10.1128/IAI.01748-06
Marques, 2019, Klebsiella pneumoniae causing urinary tract infections in companion animals and humans: Population structure, antimicrobial resistance and virulence genes, J. Antimicrob. Chemother., 74, 594, 10.1093/jac/dky499
2017, Non-molecular detection of carbapenemases in Enterobacteriaceae clinical isolates, J. Infect. Chemother., 23, 1, 10.1016/j.jiac.2016.09.008
Xie, 2017, Coexistence of blaOXA-48 and truncated blaNDM-1 on different plasmids in a Klebsiella pneumoniae isolate in China, Front. Microbiol., 8, 133, 10.3389/fmicb.2017.00133
Sidjabat, 2015, Dominance of IMP-4-producing Enterobacter cloacae among carbapenemase-producing Enterobacteriaceae in Australia, Antimicrob. Agents Chemother., 59, 4059, 10.1128/AAC.04378-14
Poirel, 2011, Genetic features of blaNDM-1-positive Enterobacteriaceae, Antimicrob. Agents Chemother., 55, 5403, 10.1128/AAC.00585-11