Generator of an abstract quantum walk
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: ACM Symposium on Theory of Computing, pp. 37–49 (2001)
Amrein, W.O., Georgescu, V.: On the characterization of bound states and scattering states in quantum mechanics. Helv. Phys. Acta 46, 635–658 (1973)
Childs, A.M., Farhi, E., Gutmann, S.: An example of the difference between quantum and classical random walks. Q. Inf. Process. 1, 35–43 (2002)
Enss, V.: Asymptotic completeness for quantum mechanical potential scattering I. Short rage potentials. Commun. Math. Phys. 61, 285–291 (1978)
Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals, pp. 34–36. McGraw-Hill Inc, New York (1965)
Gudder, S.: Quantum Probability. Academic Press Inc., Boston (1988)
Grover, L.: A fast quantum mechanical algorithm for database search. In: ACM Symposium on Theory of Computing, pp. 212–219 (1996)
Higuchi, Yu., Konno, N., Sato, I., Segawa, E.: Quantum graph walks I: mapping to quantum walks. Yokohama Math. J. 59, 33–55 (2013)
Higuchi, Yu., Konno, N., Sato, I., Segawa, E.: Spectral and asymptotic properties of Grover walks on crystal lattices. J. Funct. Anal. 267, 4197–4235 (2014)
Higuchi, Y., Segawa, E., Suzuki, A.: Spectral mapping theorem of an abstract quantum walk. arXiv:1506.06457
Konno, N.: One-dimensional discrete-time quantum walks on random environments. Q. Inf. Process. 8, 387–399 (2009)
Meyer, D.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85, 551–574 (1996)
Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. In: ACM Symposium on Theory of Computing, pp. 575–584 (2007)
Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. III. Academic Press, New York (1979)
Ruelle, D.: A remark on bound states in potential-scattering theory. Nuovo Cimento A 61, 655–662 (1969)
Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Annual IEEE Symposium on Foundations of Computer, pp. 32–41 (2004)
Segawa, E.: Localization of quantum walks induced by recurrence properties of random walks. J. Comput. Theor. Nanos. 10, 1583–1590 (2013)
Shikano, Y.: From discrete-time quantum walk to continuous-time quantum walk in limit distribution. J. Comput. Theor. Nanos. 10, 1558–1570 (2013)
Shikano, Y., Katsura, H.: Localization and fractality in inhomogeneous quantum walks with self-duality. Phys. Rev. E 82, 031122 (2010)
Watrous, J.: Quantum simulations of classical random walks and undirected graph connectivity. J. Comput. Syst. Sci. 62, 376–391 (2001)
Wiener, N.: The Fourier Integral and Certain of its Applications. Cambridge University Press, London (1935)