Generative models: an upcoming innovation in musculoskeletal radiology? A preliminary test in spine imaging
Tóm tắt
Từ khóa
Tài liệu tham khảo
Najafabadi MM, Villanustre F, Khoshgoftaar TM, Seliya N, Wald R, Muharemagic E (2015) Deep learning applications and challenges in big data analytics. J Big Data 2:1
Isola P, Zhu J, Zhou T, Efros AA (2017) Image-to-image translation with conditional adversarial networks. arXiv preprint. arXiv:1611.07004
Goodfellow I (2016) NIPS 2016 tutorial: generative adversarial networks. arXiv preprint. arXiv:1701.00160
Liu Y, Qin Z, Luo Z, Wang H (2018) Auto-painter: cartoon image generation from sketch by using conditional generative adversarial networks. Neurocomputing 311:78–87
Galbusera F, Bassani T, Costa F, Brayda-Bruno M, Zerbi A, Wilke HJ (2016) Artificial neural networks for the recognition of vertebral landmarks in the lumbar spine. Comput Methods Biomech Biomed Eng Imaging Vis 6:447–452
Jamaludin A, Lootus M, Kadir T et al (2017) ISSLS PRIZE IN BIOENGINEERING SCIENCE 2017: Automation of reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is comparable with an expert radiologist. Eur Spine J 26:1374–1383
Koh J, Chaudhary V, Dhillon G (2012) Disc herniation diagnosis in MRI using a CAD framework and a two-level classifier. Int J Comput Assist Radiol Surg 7:861–869
Azimi P, Benzel EC, Shahzadi S, Azhari S, Mohammadi HR (2014) Use of artificial neural networks to predict surgical satisfaction in patients with lumbar spinal canal stenosis. J Neurosurg Spine 20:300–305
Scheer JK, Smith JS, Schwab F et al (2017) Development of a preoperative predictive model for major complications following adult spinal deformity surgery. J Neurosurg Spine 26:736–743
Oh T, Scheer JK, Smith JS et al (2017) Potential of predictive computer models for preoperative patient selection to enhance overall quality-adjusted life years gained at 2-year follow-up: a simulation in 234 patients with adult spinal deformity. Neurosurg Focus 43:E2
Galbusera F, Niemeyer F, Seyfried M et al (2018) Exploring the potential of generative adversarial networks for synthesizing radiological images of the spine to be used in in silico trials. Front Bioeng Biotechnol 6:53
Ledig C, Theis L, Huszár F et al (2016) Photo-realistic single image super-resolution using a generative adversarial network. arXiv preprint. arXiv:1609:04802
Li C, Wand M (2016) Precomputed real-time texture synthesis with Markovian generative adversarial networks. In: Leibe B, Matas J, Sebe N, Welling M (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9907. Springer, Cham, pp 702–706
Zhu J, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv preprint arXiv:1703.10593
Larsen ABL, Sønderby SK, Larochelle H, Winther O (2015) Autoencoding beyond pixels using a learned similarity metric. arXiv preprint arXiv:1512.09300
Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, vol 9351. Springer, Cham, pp 234–241
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612
Gu K, Zhai G, Yang X, Zhang W (2012) An improved full-reference image quality metric based on structure compensation. In: Proceedings of The 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, Hollywood, CA. IEEE, Piscataway, pp 1–6
Narvekar ND, Karam LJ (2011) A no-reference image blur metric based on the cumulative probability of blur detection (CPBD). IEEE Trans Image Process 20:2678–2683
Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR (1988) Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 166:193–199
Wang Y, Yu B, Wang L et al (2018) 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. Neuroimage 174:550–562
Wolterink JM, Leiner T, Viergever MA, Isqum I (2017) Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging 36:2536–2545
Garwood ER, Knoll F, Hammernik K et al (2017) Accelerated knee MRI with machine learning based reconstruction compared to standard knee MRI protocol: analysis of protocol interchangeability and image quality. Paper presented at Radiological Society of North America annual meeting, Chicago, IL, November 28th 2017 (abstract SSG09-03)
Johnstone E, Wyatt JJ, Henry AM et al (2018) Systematic review of synthetic computed tomography generation methodologies for use in magnetic resonance imaging-only radiation therapy. Int J Radiat Oncol Biol Phys 100:199–217
Schad LR, Blüml S, Hawighorst H, Wenz F, Lorenz WJ (1994) Radiosurgical treatment planning of brain metastases based on a fast, three-dimensional MR imaging technique. Magn Reson Imaging 12:811–819
Dowling JA, Sun J, Pichler P et al (2015) Automatic substitute computed tomography generation and contouring for magnetic resonance imaging (MRI)-alone external beam radiation therapy from standard MRI sequences. Int J Radiat Oncol Biol Phys 93:1144–1153
Uh J, Merchant TE, Li Y, Li X, Hua C (2014) MRI-based treatment planning with pseudo CT generated through atlas registration. Med Phys 41:051711
Johansson A, Karlsson M, Yu J, Asklund T, Nyholm T (2012) Voxel-wise uncertainty in CT substitute derived from MRI. Med Phys 39:3283–3290
Gudur MSR, Hara W, Le Q, Le QT, Wang L, Xing L, Li R (2014) A unifying probabilistic Bayesian approach to derive electron density from MRI for radiation therapy treatment planning. Phys Med Biol 59:6595
Van Reeth E, Tham IW, Tan CH, Poh CL (2012) Super-resolution in magnetic resonance imaging: a review. Concepts Magn Reson, 40A:306–325
Peled S, Yeshurun Y (2001) Superresolution in MRI: application to human white matter fiber tract visualization by diffusion tensor imaging. Magn Res Med 45:29–35
Tieng QM, Cowin GJ, Reutens DC, Galloway GJ, Vegh V (2011) MRI resolution enhancement: how useful are shifted images obtained by changing the demodulation frequency? Magn Res Med 65:664–672
Hagiwara A, Warntjes M, Hori M et al (2017) SyMRI of the brain: rapid quantification of relaxation rates and proton density, with synthetic MRI, automatic brain segmentation, and myelin measurement. Invest Radiol 52:647–657
Andica C, Hagiwara A, Hori M et al (2017) Automated brain tissue and myelin volumetry based on quantitative MR imaging with various in-plane resolutions. J Neuroradiol 45:164–16836
Drake-Pérez M, Delattre BMA, Boto J et al (2018) Normal values of magnetic relaxation parameters of spine components with the synthetic MRI sequence. AJNR Am J Neuroradiol 39:788–795
Tokuda O, Hayashi N, Matsunaga N (2004) MRI of bone tumors: fast STIR imaging as a substitute for T1-weighted contrast-enhanced fat-suppressed spin-echo imaging. J Magn Reson Imaging 19:475–481