Generation annealing kinetics of interface states on oxidized silicon activated by 10.2-eV photohole injection

Journal of Applied Physics - Tập 53 Số 12 - Trang 8886-8893 - 1982
Chih‐Tang Sah1, Jack Yuan-Chen Sun2,1, Joseph Jeng-Tao Tzou1
1Solid State Electronics Laboratory, Department of Electrical Engineering and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
2International College of Semiconductor Technology

Tóm tắt

Analysis of the generation and annealing kinetics of U-shaped and peaked donorlike interface density of states (DOS’s) are reported. The U-shaped interface DOS appears to be related to oxygen deficiency or silicon dangling bonds formed during oxidation and it does not anneal after 50 h at 25 C but anneals rapidly (minutes) above 300 C in hydrogen containing ambients, suggesting Si-H bond formation during anneal. The U-shaped DOS reappears following a first-order kinetics when 10.2-eV photogenerated holes are injected into the oxide, suggesting that these Si-H bonds are broken by hole capture and dissolved hydrogen molecules are formed. As many as three donorlike interface DOS peaks above Si midgap are also generated by the 10.2-eV photoholes following a first-order kinetics, and they appear to be related to excess oxygen or oxygen dangling bonds formed at the interface during oxidation. These donor DOS peaks anneal out in less than 50 h at 25 C following a second-order annealing kinetics, suggesting that the oxygen dangling bonds react with H2 to form SiO-H. Band edge tail states seem also evident whose density is not affected by the photoinjected holes suggesting an association with strained Si-Si bonds.

Từ khóa


Tài liệu tham khảo

1967, Proc. IEEE, 55, 1168, 10.1109/PROC.1967.5776

1976, IEEE Trans. Nucl. Sci., NS-23, 1563

1979, IEEE Trans. Electron Devices, ED-26, 372

1982, J. Appl. Phys., 53, 800, 10.1063/1.329996

1969, Appl. Phys. Lett., 15, 174, 10.1063/1.1652955

1970, J. Appl. Phys., 41, 3052, 10.1063/1.1659364

1974, J. Appl. Phys., 45, 5373, 10.1063/1.1663246

1976, J. Appl. Phys., 47, 1196, 10.1063/1.322706

1977, IEEE Trans. Nucl. Sci., NS-24, 2128

1979, J. Appl. Phys., 50, 6366, 10.1063/1.325727

1979, J. Electrochem. Soc., 126, 1573, 10.1149/1.2129333

1981, J. Appl. Phys., 52, 4090, 10.1063/1.329259

1971, J. Appl. Phys., 42, 5654, 10.1063/1.1659996

1981, Appl. Phys. Lett., 38, 631, 10.1063/1.92459

1981, J. Appl. Phys., 52, 5665, 10.1063/1.329502

1981, J. Appl. Phys., 52, 5691, 10.1063/1.329505

1981, Appl. Phys. Lett., 39, 58, 10.1063/1.92514

1981, J. Appl. Phys., 52, 6231, 10.1063/1.328565

1982, Appl. Phys. Lett., 40, 601, 10.1063/1.93194

1975, Appl. Phys. Lett., 27, 61, 10.1063/1.88366

1981, J. Appl. Phys., 52, 879, 10.1063/1.328771

1971, J. Phys. Chem. Solids, 32, 1935, 10.1016/S0022-3697(71)80159-2

1978, J. Appl. Phys., 49, 2499, 10.1063/1.325099

1975, J. Appl. Phys., 46, 3909, 10.1063/1.322138

1974, Solid-State Electron., 17, 377, 10.1016/0038-1101(74)90129-4

1976, Solid-State Electron., 19, 255, 10.1016/0038-1101(76)90171-4

1974, J. Appl. Phys., 45, 3916, 10.1063/1.1663887

1975, Appl. Phys. Lett., 26, 378, 10.1063/1.88175

1982, IEEE Trans. Electron Devices, ED-29, 306

1982, Solid-State Electron., 25, 95, 10.1016/0038-1101(82)90037-5

1981, Appl. Phys. Lett., 39, 410, 10.1063/1.92755

1971, Phys. Rev. B, 4, 3469

1974, Phys. Rev. B, 10, 621, 10.1103/PhysRevB.10.621