Generation and analysis of expressed sequence tags from NaCl-treated Glycine soja

Wei Ji1, Yong Li1, Jie Li1, Chuan‐Chao Dai1, Xi Wang1, Xi Bai1, Hua Cai1, Liang Yang1, Yanming Zhu1
1Plant Bioengineering Laboratory, Northeast Agricultural University, 150030, Harbin, China

Tóm tắt

Abstract Background Salinization causes negative effects on plant productivity and poses an increasingly serious threat to the sustainability of agriculture. Wild soybean (Glycine soja) can survive in highly saline conditions, therefore provides an ideal candidate plant system for salt tolerance gene mining. Results As a first step towards the characterization of genes that contribute to combating salinity stress, we constructed a full-length cDNA library of Glycine soja (50109) leaf treated with 150 mM NaCl, using the SMART technology. Random expressed sequence tag (EST) sequencing of 2,219 clones produced 2,003 cleaned ESTs for gene expression analysis. The average read length of cleaned ESTs was 454 bp, with an average GC content of 40%. These ESTs were assembled using the PHRAP program to generate 375 contigs and 696 singlets. The resulting unigenes were categorized according to the Gene Ontology (GO) hierarchy. The potential roles of gene products associated with stress related ESTs were discussed. We compared the EST sequences of Glycine soja to that of Glycine max by using the blastn algorithm. Most expressed sequences from wild soybean exhibited similarity with soybean. All our EST data are available on the Internet (GenBank_Accn: DT082443~DT084445). Conclusion The Glycine soja ESTs will be used to mine salt tolerance gene, whose full-length cDNAs will be obtained easily from the full-length cDNA library. Comparison of Glycine soja ESTs with those of Glycine max revealed the potential to investigate the wild soybean's expression profile using the soybean's gene chip. This will provide opportunities to understand the genetic mechanisms underlying stress response of plants.

Từ khóa


Tài liệu tham khảo

John Cushman, Hans Bohnert: Genomic approaches to plant stress tolerance. Genome studies and molecular genetics, Current Opinion in Plant Biology. 2000, 3: 117-124.

Frova C, Caffulli A, Pallavera E: Mapping quantitative trait loci for tolerance to abiotic stresses in maize. J Exp Zool. 1999, 282: 164-170. 10.1002/(SICI)1097-010X(199809/10)282:1/2<164::AID-JEZ18>3.0.CO;2-U.

Cushman JC, Bohnert HJ: Genomics approaches to plant strss. Curr Opin Plant Biol. 2000, 3 (2): 117-124. 10.1016/S1369-5266(99)00052-7.

Nuccio ML, Rhodes D, McNeil SD, Hanson AD: Metabolic engineering of plants for osmotic stress resistance. Curr Opin Plant Biol. 1998, 2: 128-134. 10.1016/S1369-5266(99)80026-0.

Bouchez D, Höfte H: Functional genomics in plants. Plant Physiol. 1998, 118: 725-732. 10.1104/pp.118.3.725.

Somerville C, Somerville S: Plant functional genomics. Science. 1999, 285: 380-383. 10.1126/science.285.5426.380.

Alba R, Fei Z, Payton P, Liu Y, Moore SL, Debbie P, Cohn J, D'Ascenzo M, Gordon JS, Rose JK, Martin G, Tanksley SD, Bouzayen M, Jahn MM, Giovannoni J: ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development. The Plant Journal. 2004, 39: 697-714. 10.1111/j.1365-313X.2004.02178.x.

Hui Wei, Anik Dhanaraj, Lisa Rowland, Yan Fu, Stepen Krebs, Rajeev Arora: Comparative analysis of expressed sequence tags from cold-acclimated and non-acclimated leaves of Rhododendron catawbiense Michx. Planta. 2005 Jan 27

Qiao Yake, Li Guilan, Gao Shuguo, Bi Yanjuan, You Lina, Shi Xiangfu, Zhang Yi: Geographical Distribution and Salt Tolerance of Wild Soybean (G. Soja) in Inshore Regions in ChangLi Hebei Province. Journal of Hebei Vocation Technical Teachers College. 2001, 15 (2): 9-13.

Wong CE, Li Y, Whitty BR, Diaz-Camino C, Akhter SR, Brandle JE, Golding GB, Weretilnyk EA, Moffatt BA, Griffith M: Expressed sequence tags from the Yukon ecotype of Thellungiella reveal that gene expression in response to cold, drought and salinity shows little overlap. Plant Molecular Biology. 2005, 58: 561-574. 10.1007/s11103-005-6163-6.

Dinah Qutob, Peter Hraber, Bruno Sobral, Mark Gijzen: Comparative Analysis of Expressed Sequences in Phytophthora sojae. Plant Physiology. 2000, 123: 243-253. 10.1104/pp.123.1.243.

The Arabidopsis Information Resource. [http://www.arabidopsis.org]

Berardini TZ, Mundodi S, Reiser L, Huala E, Garcia-Hernandez M, Zhang P, Mueller LA, Yoon J, Doyle A, Lander G, Moseyko N, Yoo D, Xu I, Zoeckler B, Montoya M, Miller N, Weems D, Rhee SY: Functional annotation of the Arabidopsis genome using controlled vocabularies. Plant Physiol. 2004, 135: 745-755. 10.1104/pp.104.040071.

Preeti A, Mehta K, Sivaprakash M, Parani Gayatri Venkataraman, Ajay Parida: Generation and analysis of expressed sequence tags from the salt-tolerant mangrove species Avicennia marina (Forsk) Vierh. Theor Appl Genet. 2005, 110: 416-424. 10.1007/s00122-004-1801-y.

Waditee R, Hibino T, Tanaka Y, Nakamura T, Incharoensakdi A, Hayakawa S, Suzuki S, Futsuhara Y, Kawamitsu Y, Takabe T, Takabe T: Functional characterization of betaine/praline transporters in betaine-accumulating mangrove. J Biol Chem. 2002, 277: 18373-18382. 10.1074/jbc.M112012200.

Huh GH, Damez B, Matsumoto TK, Reddy MP, Rus AM, Ibeas JI, Narasimhan ML, Bressan RA, Hasegawa PM: Salt causes ion disequilibriuminduced programmed cell death in yeast and plants. Plant J. 2002, 29: 649-659. 10.1046/j.0960-7412.2001.01247.x.

Yan Wang J, Tissue D, Holaday AS, Allen R, Zhang H: Photosynthesis and seed production under water deficit conditions in transgenic tobacco plants that overexpress an Arabidopsis ascorbate peroxidase gene. Crop Sci. 2003, 43: 1477-1483.

Hall JL: Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot. 2002, 53: 1-11. 10.1093/jexbot/53.366.1.

Ozturk ZN, Talame V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ: Monitoring large-scale changes in transcript abundance in droughtand salt-stressed barley. Plant Mol Biol. 2002, 48: 551-573. 10.1023/A:1014875215580.

Bausher M, Shatters R, Chaparro J, Dang P, Hunter W, Niedz R: An expressed sequence tag (EST) set from Citrus sinensis L. Osbeck whole seedling and the implications of further perennial source investigations. Plant Sci. 2003, 165: 415-422. 10.1016/S0168-9452(03)00202-4.

Snedden WA, Fromm H: Calmodulin as a versatile calcinm signal transducer in plants. New Phytol. 2001, 151: 35-36. 10.1046/j.1469-8137.2001.00154.x.

Zhu JK: Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol. 2000, 124: 941-948. 10.1104/pp.124.3.941.

Luan S, Kudla. J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W: Clamodulins and calcineurin-B like proteins: Calcium sensors for specific signal response coupling in plants. Plant Cell. 2002, 14: S389-S400.

Zhu JK: Salt and drought stress signal transduction in plants. Annu Rev Plant Biol. 2002, 53: 247-273. 10.1146/annurev.arplant.53.091401.143329.

Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. 1989, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

Telles GP, da Silva FR: Trimming and clustering sugarcane ESTs. Genet Mol Biol. 2001, 24: 17-23.

Laboratory of PHIL GREEN. [http://www.phrap.org]

Gene Ontology Home. [http://www.geneontology.org]