Generating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks

Elsevier BV - Tập 16 Số 3 - Trang 541-549 - 2019
Tuanfeng Zhang1, Peter Tilke1, Emilien Dupont2, Lingchen Zhu1, Lin Li1, William J. Bailey3
1Applied Math and Data Analytics, Schlumberger-Doll Research, Cambridge, MA, USA
2Schlumberger Technology Innovation Center, Menlo Park, CA, USA
3Reservoir Geosciences, Schlumberger-Doll Research, Cambridge, MA, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Caers J, Zhang T. Multiple-point geostatistics: a quantitative vehicle for integrating geologic analogs into multiple reservoir models. AAPG Memoir. 2004;80:383–94.

Chan S, Elsheikh AH. Parametrization and generation of geological models with generative adversarial networks. 2017. arXiv preprint arXiv:1708.01810 .

Chugunova T, Hu LY. Multiple-point simulations constrained by continuous auxiliary data. Math Geosci. 2008;40:133–46.

Cressie N. The origins of kriging. Math Geol. 1990;22(3):239–52.

Deutsch CV, Journel AG. Geostatistical software library and user’s guide. New York, Oxford: Oxford University Press; 1998. p. 369.

Deutsch CV, Wang L. Hierarchical object-based stochastic modeling of fluvial reservoirs. Math Geol. 1996;28(7):857–80.

Dupont E, Zhang T, Tilke P, Liang L, Bailey W. Generating realistic geology conditioned on physical measurements with generative adversarial networks. 2018. arXiv preprint arXiv:1802.03065 .

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. In: Advances in neural information processing systems; 2014. p. 2672–80.

Goovaerts P. Geostatistics for natural resources evaluation. New York, Oxford: Oxford University Press; 1997. p. 483.

Hauge R, Holden L, Syversveen AR. Well conditioning in object models. Math Geol. 2007;39(4):383–98.

Holden L, Hauge R, Skare Ø, Skorstad A. Modeling of fuvial reservoirs with object models. Math Geol. 1998;30(5):473–96.

Honarkhah M, Caers J. Direct pattern-based simulation of non-stationary geostatistical models. Math Geosci. 2012;44:651–72.

Journel AG, Zhang T. The necessity of a multiple-point prior model. Math Geol. 2006;38(5):591–610.

Laloy E, Herault R, Jacques D, Linde N. Training-image based geostatistical inversion using a spatial generative adversarial neural network. Water Resour Res. 2017;54:381–406.

Li H, Li G, Lin L, Yu Y. Context-aware semantic inpainting. 2017. arXiv preprint arXiv:1712.07778 .

Mosser L, Dubrule O, Blunt MJ. Reconstruction of three-dimensional porous media using generative adversarial neural networks. Phys Rev E. 2017;96(4):043309.

Pathak D, Krahenbuhl P, Donahue J, Darrell T, Efros AA. Context encoders: feature learning by inpainting. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 2536–44.

Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. 2015. arXiv preprint arXiv:1511.06434 .

Skorstad A, Hauge R, Holden L. Well conditioning in a fuvial reservoir model. Math Geol. 1999;31(7):857–72.

Strebelle S. Conditional simulation of complex geological structures using multiple-point statistics. Math Geol. 2002;34(1):1–21.

Yeh R, Chen C, Lim TY, Hasegawa-Johnson M, Do MN. Semantic image inpainting with perceptual and contextual losses. 2016. arXiv preprint arXiv:1607.07539 .

Zhang T, Switzer P, Journel A. Filter-based classification of training image patterns for spatial simulation. Math Geol. 2006;38(1):63–80.