Generalized solutions of a stochastic partial differential equation

Springer Science and Business Media LLC - Tập 7 Số 2 - Trang 279-308 - 1994
Hiroshi Kunita1
1Department of Applied Science, Kyushu University 36, Fukuoka, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adams, R. A. (1975).Sobolev Spaces, Academic Press.

Bismut, J. M., and Michel, D. (1981). Diffusions conditionelles, I. Hypoellipticité partielle,J. Functional Analysis 44 174–221.

Hörmander, L. (1967). Hypoelliptic second order differential equations,Acta Math. 119, 147–171.

Ikeda, N., and Watanabe, S. (1989).Stochastic Differential Equations and Diffusion Processes, Second edition, North-Holland/Kodansha.

Krylov, N. V., and Rozovskii, B. L. (1982). On the Cauchy problem for linear stochastic partial differential equations,Russian Math. Survey 37(6), 75–95.

Kunita, H. (1970). Stochastic integrals based on martingales taking values in Hilbert space.Nagoya Math. J. 38, 41–52.

Kunita, H. (1990).Stochastic Flows and Stochastic Differential Equations, Cambridge University Press.

Kunita, H. (1994). Stochastic flows acting on Schwartz distributions.J. Theoret. Prob. 7, 247–278.

Kusuoka, S., and Stroock, D. W. (1985). Applications of the Malliavin calculus, Part II, University Tokyo Sect. IA,J. Fac. Sci. Math. 32, 1–76.

Kusuoka, S., and Stroock, D. W. (1984). The partial Malliavin calculus and its application to non-linear filtering,Stochastics 12, 83–142.

Métivier, M. (1982).Semimartingales: A Course on Stochastic Processes, Walter de Gruyter, Berlin.

Pardoux, E. (1979). Stochastic partial differential equations and filtering of diffusion processes,Stochastics 3, 127–167.

Watanabe, S. (1984).Lectures on Stochastic Differential Equations and Malliavin Calculus, Tata Institute of Fundamental Research/Springer.