Generalized Classical Weighted Means, the Invariance, Complementarity and Convergence of Iterates of the Mean-Type Mappings

Results in Mathematics - Tập 77 - Trang 1-17 - 2022
Dorota Głazowska1, Janusz Matkowski1
1Institute of Mathematics, University of Zielona Góra, Zielona Góra, Poland

Tóm tắt

Under some simple conditions on real function f defined on an interval I, the bivariable functions given by the following formulas $$\begin{aligned} A_{f}\left( x,y\right):= & {} f\left( x\right) +y-f\left( y\right) , \\ G_{f}\left( x,y\right):= & {} \frac{f\left( x\right) }{f\left( y\right) }\,y, \\ \text{ and } \quad H_{f}\left( x,y\right):= & {} \frac{xy}{f\left( x\right) +y-f\left( y\right) }, \end{aligned}$$ for all $$x,y\in I$$ , generalize, respectively, the classical weighted arithmetic, geometric and harmonic means. The invariance equations $$\begin{aligned} A_{f}\circ \left( G_{g},H_{h}\right) =A_{f}, \quad G_{g}\circ \left( A_{f},H_{h}\right) =G_{g} \quad \text{ and } \quad H_{h}\circ \left( A_{f},G_{g}\right) =H_{h}, \end{aligned}$$ where f, g,  h are the unknown functions are, in some special cases, solved. The convergence of iterates of the relevant mean-type mappings is considered. As an application the solutions of some functional equations are determined.

Tài liệu tham khảo

Baják, Sz., Páles, Zs.: Invariance equation for generalized quasi-arithmetic means. Aequationes Math. 77, 133–145 (2009) Borwein, J.M., Borwein, P.B.: Pi and the AGM. Monographies et Études de la Société Mathématique du Canada. Wiley, Toronto (1987) Bullen, P.S.: Handbook of Means and Their Inequalities. Kluwer Academic Publishers, Dordrecht (2003) Daróczy, Z., Páles, Z.: The Matkowski–Sutô problem for weighted quasi-arithmetic means. Acta Math. Hung. 100, 237–243 (2003) Głazowska, D., Jarczyk, W., Matkowski, J.: Arithmetic mean as a linear combination of two quasi-arithmetic means. Publ. Math. Debr. 61, 455–467 (2002) Jarczyk, J.: Invariance of weighted quasi-arithmetic means with continuous generators. Publ. Math. Debr. 71, 279–294 (2007) Jarczyk, J., Jarczyk, W.: Invariance of means. Aequationes Math. 92, 801–872 (2018) Kahlig, P., Matkowski, J.: Generalization of the harmonic weighted mean via Pythagorean invariance identity and application. Ann. Math. Sil. 34, 104–122 (2020) Matkowski, J.: Invariant and complementary quasi-arithmetic means. Aequationes Math. 57, 87–107 (1999) Matkowski, J.: Iterations of mean-type mappings and invariant means. Ann. Math. Sil. 13, 211–226 (1999) Matkowski, J.: Chapter 36: Generalized weighted arithmetic means. In: Rassias, T.M., Brzdek, J. (eds.) Functional Equations in Mathematical Analysis, pp. 563–582. Springer, New York (2012) Matkowski, J.: Iterations of the mean-type mappings and uniqueness of invariant means. Ann. Univ. Sci. Bp. Sect. Comput. 41, 145–158 (2013)