Generalization Strategies in Finding the nth Term Rule for Simple Quadratic Sequences

Irene Biza1, Dave Hewitt2, Anne Watson3, John Mason3
1University of East Anglia, Norwich NR4 7TJ, UK
2Loughborough University, Loughborough LE11 3TU, UK
3University of Oxford, Oxford, OX1 2JD, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183–198.

Barmby, P., Andrà, C., Gomez, D., Obersteiner, A., & Shvarts, A. (2014). The use of eye-tracking technology in mathematics education research. In P. Liljedahl, C. Nicol, S. Oesterle, & D. Allan (Eds.), Proceedings of the joint meeting of PME38 and PME-NA36 (Vol. 1, p. 253). Vancouver: PME.

Beitlich, J. T., & Obersteiner, A. (2015). Eye-tracking as a method for identifying mathematical strategies. In K. Beswick, T. Muir, & J. Wells (Eds.), Proceedings of 39th Psychology of Mathematics Education conference (Vol. 1, pp. 93–97). Hobart: PME.

Branch, J. (2000). Investigating the information-seeking processes of adolescents: The value of using think alouds and think afters. Library & Information Science Research, 22(4), 371–392.

Canham, M., & Hegarty, M. (2010). Effects of knowledge and display design on comprehension of complex graphics. Learning and Instruction, 20(2), 155–166.

Carraher, D. W., Martinez, M. V., & Schliemann, A. D. (2008). Early algebra and mathematical generalization. ZDM – The International Journal on Mathematics Education, 40(1), 3–22.

Chumachemko, D., Shvarts, A., & Budanov, A. (2014). The development of the visual perception of the cartesian coordinate system: An eye tracking study. In P. Liljedahl, C. Nicol, S. Oesterle, & D. Allan (Eds.), Proceedings of the joint meeting of PME38 and PME-NA36 (Vol. 2, pp. 313–320). Vancouver: PME.

Confrey, J., & Smith, E. (1994). Exponential functions, rates of change, and the multiplicative unit. Educational Studies in Mathematics, 26, 135–164.

Crisp, R., Inglis, M., Mason, J., & Watson, A. (2012). Individual differences in generalisation strategies. Research in Mathematics Education, 14(3), 291–292.

Cuoco, A. (2005). Mathematical connections: A companion for teachers and others. Washington, DC: Mathematical Association of America, Cambridge University Press.

DfE. (2013). Mathematics programmes of study: Key stage 3. London: Department of Education.

Dörfler, W. (2016). Signs and their use: Peirce and Wittgenstein. In A. Bikner-Ahsbahs, A. Vohns, O. Schmitt, R. Bruder, & W. Dörfler (Eds.), Theories in and of mathematics education ICME-13 topical surveys (pp. 21–31). Switzerland: Springer International Publishing. Available from https://link.springer.com/book/10.1007%2F978-3-319-42589-4 . Accessed 3 Apr 2019

Ellis, A. B., & Grinstead, P. (2008). Hidden lessons: How a focus on slope-like properties of quadratic functions encouraged unexpected generalizations. The Journal of Mathematical Behavior, 27(4), 277–296.

Foster, C. (2004). Differences over difference methods: Pros and cons of different ways of finding the nth term of a sequence of numbers. Mathematics in School, 33(5), 24–25.

Green, H. J., Lemaire, P., & Dufau, S. (2007). Eye movement correlates of younger and older adults’ strategies for complex addition. Acta Psychologica, 125(3), 257–278.

Haider, H., & Frensch, P. A. (1999). Eye movement during skill acquisition: More evidence for the information-reduction hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(1), 172–190.

Huber, S., Moeller, K., & Nuerk, H.-C. (2014). Adaptive processing of fractions – Evidence from eye-tracking. Acta Psychologica, 148, 37–48.

Hyönä, J. (2010). The use of eye movements in the study of multimedia learning. Learning and Instruction, 20(2), 172–176.

Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychological Review, 87(4), 329–354.

Knoblich, G., Ohlsson, S., & Raney, G. E. (2001). An eye movement study of insight problem solving. Memory and Cognition, 29(7), 1000–1009.

MacGregor, M., & Stacey, K. (1993). Seeing a pattern and writing a rule. In I. Hirabayashi, N. Nohda, K. Shigematsu, & F. Lin (Eds.), Proceedings of 17th Psychology of Mathematics Education conference (Vol. 1, pp. 181–188). Tsukuba: University of Tsukuba.

Montenegro, P., Costa, C., & Lopes, B. (2018). Transformations in the visual representation of a figural pattern. Mathematical Thinking and Learning, 20(2), 91–107.

Obersteiner, A., Moll, G., Beitlich, J. T., Cui, C., Schmidt, M., Khmelivska, T., & Reiss, K. (2014). Expert mathematicians’ strategies for comparing the numerical values of fractions – Evidence from eye movements. In P. Liljedahl, C. Nicol, S. Oesterle, & D. Allan (Eds.), Proceedings of the joint meeting of PME38 and PME-NA36 (Vol. 4, pp. 337–344). Vancouver: PME.

Panse, A., Alcock, L., & Inglis, M. (2018). Reading proofs for validation and comprehension: An expert-novice eye-movement study. International Journal of Research in Undergraduate Mathematics Education, 4(3), 357–375.

Radford, L. (2008). Iconicity and contraction: A semiotic investigation of forms of algebraic generalizations of patterns in different contexts. ZDM – The International Journal on Mathematics Education, 40, 88–96.

Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372–422.

Rivera, F. D. (2013). Teaching and learning patterns in school mathematics. New York: Springer.

Steele, D. (2008). Seventh-grade students’ representations for pictorial growth and change problems. ZDM – The International Journal on Mathematics Education, 40(1), 97–110.

Sullivan, J. L., Juhasz, B. J., Slattery, T. J., & Barth, H. C. (2011). Adults’ number-line estimation strategies: Evidence from eye movements. Psychonomic Bulletin and Review, 18(3), 557–563.

Tobii Technology. (2010). Tobii eye tracking: An introduction to eye tracking and Tobii eye trackers. Stockholm: Tobii Technology AP.

van Gog, T., & Scheiter, K. (2010). Eye tracking as a tool to study and enhance multimedia learning. Learning and Instruction, 20(2), 95–99.

Was, C., Sansosti, F., & Morris, B. (2017). Eye-tracking technology applications in educational research. Hershey: IGI Global.

Yeşildere, S., & Akkoç, H. (2010). Algebraic generalization strategies of number patterns used by pre-service elementary mathematics teachers. Procedia-Social and Behavioral Sciences, 2(2), 1142–1147.

Zaslavsky, O. (1997). Conceptual obstacles in the learning of quadratic functions. Focus on Learning Problems in Mathematics, 19(1), 20–44.