General decay rate estimates for a semilinear parabolic equation with memory term and mixed boundary condition

Springer Science and Business Media LLC - Tập 2014 - Trang 1-11 - 2014
Changjun Li1, Liru Qiu1, Zhong Bo Fang1
1School of Mathematical Sciences, Ocean University of China, Qingdao, P. R. China

Tóm tắt

This work is concerned with a mixed boundary value problem for a semilinear parabolic equation with a memory term. Under suitable conditions, we prove that the energy functional decays to zero as the time tends to infinity by the method of perturbation energy, in which the usual exponential and polynomial decay results are only special cases.

Tài liệu tham khảo

Prato GD, Iannelli M: Existence and regularity for a class of integro-differential equations of parabolic type. J. Math. Anal. Appl. 1985, 112(1):36-55. 10.1016/0022-247X(85)90275-6 Friedman A: The IMA Volumes in Mathematics and Its Applications. Springer, New York; 1992. Nohel JA: Nonlinear Volterra equations for heat flow in materials with memory. In Integral and Functional Differential Equations. Edited by: Herdman TL, Stech HW, Rankin SM III. Dekker, New York; 1981:3-82. Yin HM: On parabolic Volterra equations in several space dimensions. SIAM J. Math. Anal. 1991, 22(6):1723-1737. 10.1137/0522106 Yin HM: Weak and classical solutions of some nonlinear Volterra integro-differential equations. Commun. Partial Differ. Equ. 1992, 17: 1369-1385. 10.1080/03605309208820889 Quittner R, Souplet P: Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States. Birkhäuser, Basel; 2007. Hu B: Blow up Theories for Semilinear Parabolic Equations. Springer, Berlin; 2011. Levine HA: The role of critical exponents in blow-up theorems. SIAM Rev. 1990, 32: 262-288. 10.1137/1032046 Lopez Gomez J, Marquez V, Wolanski N: Blow up results and localization of blow up points for the heat equation with a nonlinear boundary condition. J. Differ. Equ. 1991, 92(2):384-401. 10.1016/0022-0396(91)90056-F Rodriguez-Bernal A, Tajdine A: Nonlinear balance for reaction-diffusion equations under nonlinear boundary conditions: dissipativity and blow-up. J. Differ. Equ. 2001, 169: 332-372. 10.1006/jdeq.2000.3903 Pucci P, Serrin J: Asymptotic stability for nonlinear parabolic systems. In Energy Methods in Continuum Mechanics. Kluwer Academic, Dordrecht; 1996:66-74. (Oviedo, 1994) 10.1007/978-94-009-0337-1_7 Olmstead WE, Davis SH, Rosenblat S, Kath WL: Bifurcation with memory. SIAM J. Appl. Math. 1986, 46(2):171-188. 10.1137/0146013 Bellout H: Blow-up of solutions of parabolic equation with nonlinear memory. J. Differ. Equ. 1987, 70: 42-68. 10.1016/0022-0396(87)90168-9 Yamada Y: On a certain class of semilinear Volterra diffusion equations. J. Differ. Equ. 1982, 88: 443-457. Cannon JR, Lin Y:A priori L 2 error estimates for finite-element methods for nonlinear diffusion equations with memory. SIAM J. Numer. Anal. 1990, 27(3):595-607. 10.1137/0727036 Yong J, Zhang X: Exact controllability of the heat equation with hyperbolic memory kernel. In Control Theory of Partial Differential Equations. Chapman Hall CRC, Boca Raton; 2005:387-401. 10.1201/9781420028317.ch22 Pao CV: Solution of a nonlinear integrodifferential system arising in nuclear reactor dynamics. J. Math. Anal. Appl. 1974, 48: 470-492. 10.1016/0022-247X(74)90171-1 Yamada Y: Asymptotic stability for some systems of semilinear Volterra diffusion equations. J. Differ. Equ. 1984, 52: 295-326. 10.1016/0022-0396(84)90165-7 Messaoudi SA: Blow-up of solutions of a semilinear heat equation with a visco-elastic term. Prog. Nonlinear Differ. Equ. Appl. 2005, 64: 351-356. Fang ZB, Sun L: Blow up of solutions with positive initial energy for the nonlocal semilinear heat equation. J. Korean Soc. Ind. Appl. Math. 2012, 16(4):235-242. 10.12941/jksiam.2012.16.4.235 Berrimi S, Messaoudi SA: A decay result for a quasilinear parabolic system. Prog. Nonlinear Differ. Equ. Appl. 2005, 53: 43-50. Messaoudi SA, Tellab B: A general decay result in a quasilinear parabolic system with viscoelastic term. Appl. Math. Lett. 2012, 25: 443-447. 10.1016/j.aml.2011.09.033 Messaoudi SA: General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Anal. TMA 2008, 69: 2589-2598. 10.1016/j.na.2007.08.035 Cavalcanti MM, Oquendo HP: Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J. Control Optim. 2003, 42: 1310-1324. 10.1137/S0363012902408010 Fang ZB, Qiu LR: Global existence and uniform energy decay rates for the semilinear parabolic equation with a memory term and mixed boundary condition. Abstr. Appl. Anal. 2013., 2013: