Gene expression profile of rat left ventricles reveals persisting changes following chronic mild exercise protocol: implications for cardioprotection
Tóm tắt
Epidemiological studies showed that physical exercise, specifically moderate lifelong training, is protective against cardiovascular morbidity and mortality. Most experimental work has focused into the effects and molecular mechanisms underlying intense, rather than mild exercise, by exploring the acute effect of training. Our study aims at investigating the cardioprotective effect of mild chronic exercise training and the gene expression profile changes at 48 hrs after the exercise cessation. Rats were trained at mild intensity on a treadmill: 25 m/min, 10%incline, 1 h/day, 3 days/week, 10 weeks; about 60% of the maximum aerobic power. By Affymetrix technology, we investigated the gene expression profile induced by exercise training in the left ventricle (LV) of trained (n = 10) and control (n = 10) rats. Cardioprotection was investigated by ischemia/reperfusion experiments (n = 10 trained vs. n = 10 control rats). Mild exercise did not induce cardiac hypertrophy and was cardioprotective as demonstrated by the decreased infarct size (p = 0.02) after ischemia/reperfusion experiments in trained with respect to control rats. Ten genes and 2 gene sets (two pathways) resulted altered in LV of exercised animals with respect to controls. We validated by real-time PCR the increased expression of four genes: similar to C11orf17 protein (RGD1306959), caveolin 3, enolase 3, and hypoxia inducible factor 1 alpha. Moreover, caveolin 3 protein levels were higher in exercised than control rats by immunohistochemistry and Western Blot analysis. Interestingly, the predicted gene similar to C11orf17 protein (RGD1306959) was significantly increased by exercise. This gene has a high homology with the human C11orf17 (alias: protein kinase-A interacting protein 1 or breast cancer associated gene 3). This is the first evidence that this gene is involved in the response to the exercise training. Our data indicated that few, but significant, genes characterize the gene expression profile of the rat LV, when examined 48 hrs since the last training section and that mild exercise training determines cardioprotection without the induction of hypertrophy.
Tài liệu tham khảo
Kramsch DM, Aspen AJ, Abramowitz BM, Kreimendahl T, Hood WB: Reduction of coronary atherosclerosis by moderate conditioning exercise in monkeys on an atherogenic diet. N Engl J Med. 1981, 305: 1483-9.
Thompson PD: Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease. Arterioscler Thromb Vasc Biol. 2003, 23: 1319-21. 10.1161/01.ATV.0000087143.33998.F2.
Moore SM, Seo Y, Rosenthal L: Using guidelines for exercise in cardiac patients. J Am Acad Nurse Pract. 2006, 18: 559-65. 10.1111/j.1745-7599.2006.00176.x.
Bowles DK, Starnes JW: Exercise training improves metabolic response after ischemia in isolated working rat heart. J Appl Physiol. 1994, 76: 1608-14.
Hamilton KL, Staib JL, Phillips T, Hess A, Lennon SL, Powers SK: Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusion. Free Radic Biol Med. 2003, 34: 800-9. 10.1016/S0891-5849(02)01431-4.
Powers SK, Demirel HA, Vincent HK, Coombes JS, Naito H, Hamilton KL, Shanely RA, Jessup J: Exercise training improves myocardial tolerance to in vivo ischemia-reperfusion in the rat. Am J Physiol. 1998, 275: R1468-77.
Starnes JW, Bowles DK: Role of exercise in the cause and prevention of cardiac dysfunction. Exerc Sport Sci Rev. 1995, 23: 349-73. 10.1249/00003677-199500230-00013.
Starnes JW, Taylor RP, Ciccolo JT: Habitual low-intensity exercise does not protect against myocardial dysfunction after ischemia in rats. Eur J Cardiovasc Prev Rehabil. 2005, 12: 169-74. 10.1097/00149831-200504000-00013.
Strom CC, Aplin M, Ploug T, Christoffersen TE, Langfort J, Viese M, Galbo H, Haunsø S, Sheikh SP: Expression profiling reveals differences in metabolic gene expression between exercise-induced cardiac effects and maladaptive cardiac hypertrophy. FEBS J. 2005, 272: 2684-95. 10.1111/j.1742-4658.2005.04684.x.
Powers SK, Lennon SL, Quindry J, Mehta JL: Exercise and cardioprotection. Curr Opin Cardiol. 2002, 17: 495-502. 10.1097/00001573-200209000-00009.
Freimann S, Scheinowitz M, Yekutieli D, Feinberg MS, Eldar M, Kessler-Icekson G: Prior exercise training improves the outcome of acute myocardial infarction in the rat. Heart structure, function, and gene expression. J Am Coll Cardiol. 2005, 45: 931-8. 10.1016/j.jacc.2004.11.052.
Yellon DM, Downey JM: Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev. 2003, 83: 1113-51.
Pagliaro P, Gattullo D, Rastaldo R, Losano G: Ischemic preconditioning from the first to the second window of protection. Life Sciences. 2001, 69: 1-15. 10.1016/S0024-3205(01)01113-4.
Marini M, Lapalombella R, Margonato V, Ronchi R, Samaja M, Scapin C, Gorza L, Maraldi T, Carinci P, Ventura C, Veicsteinas A: Mild exercise training, cardioprotection and stress genes profile. Eur J Appl Physiol. 2007, 99: 503-10. 10.1007/s00421-006-0369-4.
Fehrenbach E: Multifarious microarray-based gene expression patterns in response to exercise. J Appl Physiol. 2007, 102: 7-8. 10.1152/japplphysiol.01079.2006.
Timmons JA, Sundberg CJ: Oligonucleotide microarray expression profiling: human skeletal muscle phenotype and aerobic exercise training. IUBMB Life. 2006, 58: 15-24. 10.1080/15216540500507390.
Iemitsu M, Maeda S, Miyauchi T, Matsuda M, Tanaka H: Gene expression profiling of exercise-induced cardiac hypertrophy in rats. Acta Physiol Scand. 2005, 185: 259-70.
Diffee GM, Seversen EA, Stein TD, Johnson JA: Microarray expression analysis of effects of exercise training: increase in atrial MLC-1 in rat ventricles. Am J Physiol Heart Circ Physiol. 2003, 284: H830-7.
Committee on Care and Use of Laboratory Animals Guide for the Care and Use of Laboratory Animals. Natl Inst Health. 1985, Bethesda. DHHS Publ No (NIH), 85-23.
Brooks GA, White TP: Determination of metabolic and heart rate responses of rats to treadmill exercise. J Appl Physiol. 1978, 45 (6): 1009-15.
Bedford TG, Tipton CM, Wilson NC, Oppliger RA, Gisolfi CV: Maximum oxygen consumption of rats and its changes with various experimental procedures. J Appl Physiol. 1979, 47 (6): 1278-83.
Blangiardo M, Toti S, Giusti B, Abbate R, Magi A, Poggi F, Rossi L, Torricelli F, Biggeri A: Using a calibration experiment to assess gene-specific information: full Bayesian and empirical Bayesian models for two-channel microarray data. Bioinformatics. 2006, 22: 50-7. 10.1093/bioinformatics/bti750.
Giusti B, Serrati S, Margheri F, Papucci L, Rossi L, Poggi F, Magi A, Del Rosso A, Cinelli M, Guiducci S, Kahaleh B, Matucci-Cerinic M, Abbate R, Fibbi G, Del Rosso M: The antiangiogenic tissue kallikrein pattern of endothelial cells in systemic sclerosis. Arthritis Rheum. 2005, 52: 3618-28. 10.1002/art.21383.
Choe SE, Boutros M, Michelson AM, Church GM, Halfon MS: Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset. Genome Biol. 2005, 6: R16-10.1186/gb-2005-6-2-r16.
Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA. 2001, 98: 5116-21. 10.1073/pnas.091062498.
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004, 5: R80-10.1186/gb-2004-5-10-r80.
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005, 102: 15545-50. 10.1073/pnas.0506580102.
Pfaffl MW: A new mathematical model for relative quatification in real-time RT-PCR. Nucleic Acids Res. 2001, 29: e45-10.1093/nar/29.9.e45.
Powers SK, Quindry J, Hamilton K: Aging, exercise, and cardioprotection. Ann N Y Acad Sci. 2004, 1019: 462-70. 10.1196/annals.1297.084.
Brown MD: Exercise and coronary vascular remodelling in the healthy heart. Exp Physiol. 2003, 8 (5): 645-58. 10.1113/eph8802618.
Freimann S, Kessler-Icekson G, Shahar I, Radom-Aizik S, Yitzhaky A, Eldar M, Scheinowitz M: Exercise training alters the molecular response to myocardial infarction. Med Sci Sports Exerc. 2009, 41: 757-65. 10.1249/MSS.0b013e31819125b6.
Gao N, Asamitsu K, Hibi Y, Ueno T, Okamoto T: AKIP1 enhances NF-kappaB-dependent gene expression by promoting the nuclear retention and phosphorylation of p65. J Biol Chem. 2008, 283 (12): 7834-43. 10.1074/jbc.M710285200.
Cerutti C, Kurdi M, Bricca G, Hodroj W, Paultre C, Randon J, Gustin MP: Transcriptional alterations in the left ventricle of three hypertensive rat models. Physiol Genomics. 2006, 27 (3): 295-308. 10.1152/physiolgenomics.00318.2005.
Siddiq A, Ayoub IA, Chavez JC, Aminova L, Shah S, LaManna JC, Patton SM, Connor JR, Cherny RA, Volitakis I, Bush AI, Langsetmo I, Seeley T, Gunzler V, Ratan RR: Hypoxia-inducible factor prolyl 4-hydroxylase inhibition. A target for neuroprotection in the central nervous system. J Biol Chem. 2005, 280: 41732-43. 10.1074/jbc.M504963200.
Rossler J, Stolze I, Frede S, Freitag P, Schweigerer L, Havers W, Fandrey J: Hypoxia-induced erythropoietin expression in human neuroblastoma requires a methylation free HIF-1 binding site. J Cell Biochem. 2004, 93: 153-61. 10.1002/jcb.20133.
Boluyt MO, Brevick JL, Rogers DS, Randall MJ, Scalia AF, Li ZB: Changes in the rat heart proteome induced by exercise training: Increased abundance of heat shock protein hsp20. Proteomics. 2006, 6: 3154-69. 10.1002/pmic.200401356.
Chosa E, Sekimoto T, Sonoda N, Yamamoto K, Matsuda H, Takahama K, Tajima N: Evaluation of human beta-enolase as serum marker for exercise-induced muscle damage. Clin J Sport Med. 2003, 13: 209-12. 10.1097/00042752-200307000-00003.
Schwencke C, Braun-Dullaeus RC, Wunderlich C, Strasser RH: Caveolae and caveolin in transmembrane signaling: Implications for human disease. Cardiovasc Res. 2006, 70: 42-9. 10.1016/j.cardiores.2005.11.029.
Woodman SE, Park DS, Cohen AW, Cheung MW, Chandra M, Shirani J, Tang B, Jelicks LA, Kitsis RN, Christ GJ, Factor SM, Tanowitz HB, Lisanti MP: Caveolin-3 knock-out mice develop a progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade. J Biol Chem. 2002, 277: 38988-97. 10.1074/jbc.M205511200.
Koga A, Oka N, Kikuchi T, Miyazaki H, Kato S, Imaizumi T: Adenovirus-mediated overexpression of caveolin-3 inhibits rat cardiomyocyte hypertrophy. Hypertension. 2003, 42: 213-9. 10.1161/01.HYP.0000082926.08268.5D.
Lee YI, Cho JY, Kim MH, Kim KB, Lee DJ, Lee KS: Effects of exercise training on pathological cardiac hypertrophy related gene expression and apoptosis. Eur J Appl Physiol. 2006, 97: 216-24. 10.1007/s00421-006-0161-5.
Patel HH, Head BP, Petersen HN, Niesman IR, Huang D, Gross GJ, Insel PA, Roth DM: Protection of adult rat cardiac myocytes from ischemic cell death: role of caveolar microdomains and delta-opioid receptors. Am J Physiol Heart Circ Physiol. 2006, 291: H344-50. 10.1152/ajpheart.01100.2005.
Zhang HY, McPherson BC, Liu H, Baman TS, Rock P, Yao Z: H(2)O(2) opens mitochondrial K(ATP) channels and inhibits GABA receptors via protein kinase C-epsilon in cardiomyocytes. Am J Physiol Heart Circ Physiol. 2002, 282: H1395-403.
Niess AM, Simon P: Response and adaptation of skeletal muscle to exercise-the role of reactive oxygen species. Front Biosci. 2007, 12: 4826-38. 10.2741/2431.
Ballard-Croft C, Locklar AC, Kristo G, Lasley RD: Regional myocardial ischemia-induced activation of MAPKs is associated with subcellular redistribution of caveolin and cholesterol. Am J Physiol Heart Circ Physiol. 2006, 291: H658-67. 10.1152/ajpheart.01354.2005.
Das M, Das S, Das DK: Caveolin and MAP kinase interaction in angiotensin II preconditioning of the myocardium. J Cell Mol Med. 2007, 11: 788-97. 10.1111/j.1582-4934.2007.00067.x.