Gene editing and CRISPR in the clinic: current and future perspectives
Tóm tắt
Từ khóa
Tài liệu tham khảo
Lander, 2001, Initial sequencing and analysis of the human genome, Nature, 409, 860, 10.1038/35057062
International HapMap Consortium, 2003, The International HapMap Project, Nature, 426, 789, 10.1038/nature02168
Sayers, 2019, Database resources of the National Center for Biotechnology Information, Nucleic Acids Res., 47, D23, 10.1093/nar/gky1069
Wellcome Trust Case Control Consortium, 2007, Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls, Nature, 447, 661, 10.1038/nature05911
Visscher, 2017, 10 years of GWAS discovery: biology, function, and translation, Am. J. Hum. Genet., 101, 5, 10.1016/j.ajhg.2017.06.005
Gaj, 2013, ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering, Trends Biotechnol., 31, 397, 10.1016/j.tibtech.2013.04.004
Carroll, 2011, Genome engineering with zinc-finger nucleases, Genetics, 188, 773, 10.1534/genetics.111.131433
Joung, 2013, TALENs: a widely applicable technology for targeted genome editing, Nat. Rev. Mol. Cell Biol., 14, 49, 10.1038/nrm3486
Mojica, 2000, Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria, Mol. Microbiol., 36, 244, 10.1046/j.1365-2958.2000.01838.x
Barrangou, 2007, CRISPR provides acquired resistance against viruses in prokaryotes, Science, 315, 1709, 10.1126/science.1138140
Adli, 2018, The CRISPR tool kit for genome editing and beyond, Nat. Commun., 9, 1911, 10.1038/s41467-018-04252-2
Sternberg, 2015, Expanding the biologist’s toolkit with CRISPR-Cas9, Mol. Cell, 58, 568, 10.1016/j.molcel.2015.02.032
Mali, 2013, RNA-guided human genome engineering via Cas9, Science, 339, 823, 10.1126/science.1232033
Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819, 10.1126/science.1231143
Wiedenheft, 2012, RNA-guided genetic silencing systems in bacteria and archaea, Nature, 482, 331, 10.1038/nature10886
Jinek, 2012, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816, 10.1126/science.1225829
Lino, 2018, Delivering CRISPR: a review of the challenges and approaches, Drug Deliv., 25, 1234, 10.1080/10717544.2018.1474964
Hütter, 2009, Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation, N. Engl. J. Med., 360, 692, 10.1056/NEJMoa0802905
Yukl, 2013, Challenges in detecting HIV persistence during potentially curative interventions: a study of the Berlin Patient, PLoS Pathog., 9, e1003347, 10.1371/journal.ppat.1003347
Perez, 2008, Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases, Nat. Biotechnol., 26, 808, 10.1038/nbt1410
Tebas, 2014, Gene Editing of CCR5 in Autologous CD4 T Cells of Persons Infected with HIV, N. Engl. J. Med., 370, 901, 10.1056/NEJMoa1300662
Zhang, 2017, Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system, Nat. Commun., 8, 118, 10.1038/s41467-017-00175-6
Ye, 2014, Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection, Proc. Natl Acad. Sci. U.S.A., 111, 9591, 10.1073/pnas.1407473111
Allen, 2018, Gene editing of HIV-1 co-receptors to prevent and/or cure virus infection, Front. Microbiol., 9, 2940, 10.3389/fmicb.2018.02940
Khalili, 2017, Novel AIDS therapies based on gene editing, Cell. Mol. Life Sci., 74, 2439, 10.1007/s00018-017-2479-z
Didigu, 2014, Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD41 T cells from HIV-1 infection, Blood, 123, 61, 10.1182/blood-2013-08-521229
Liu, 2017, Genome editing of the HIV co-receptors CCR5 and CXCR4 by CRISPR-Cas9 protects CD4+ T cells from HIV-1 infection, Cell Biosci., 7, 47, 10.1186/s13578-017-0174-2
Yu, 2018, Simultaneous knockout of CXCR4 and CCR5 genes in CD4+ T cells via CRISPR/Cas9 confers resistance to both X4- and R5-tropic human immunodeficiency virus type 1 infection, Hum. Gene Ther., 29, 51, 10.1089/hum.2017.032
Kaminski, 2016, Excision of HIV-1 DNA by gene editing: a proof-of-concept in vivo study, Gene Ther., 23, 690, 10.1038/gt.2016.41
Dash, 2019, Sequential LASER ART and CRISPR treatments eliminate HIV-1 in a subset of infected humanized mice, Nat. Commun., 10, 2753, 10.1038/s41467-019-10366-y
Naidoo, 2015, Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies, Ann. Oncol., 26, 2375, 10.1093/annonc/mdv383
Gong, 2018, Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations, J. Immunother. Cancer, 6, 8, 10.1186/s40425-018-0316-z
Lu, 2018, A phase I trial of PD-1 deficient engineered T cells with CRISPR/Cas9 in patients with advanced non-small cell lung cancer with PD-L1 expression [abstract], Proceedings of the American Association for Cancer Research Annual Meeting 2018, 10.1158/1538-7445.AM2018-CT133
Lu, 2018, A phase I trial of PD-1 deficient engineered T cells with CRISPR/Cas9 in patients with advanced non-small cell lung cancer, J. Clin. Oncol., 36, 3050, 10.1200/JCO.2018.36.15_suppl.3050
Rohaan, 2018, Adoptive transfer of tumor-infiltrating lymphocytes in melanoma: a viable treatment option, J. Immunother. Cancer, 6, 102, 10.1186/s40425-018-0391-1
Geukes Foppen, 2015, Tumor-infiltrating lymphocytes for the treatment of metastatic cancer, Mol. Oncol., 9, 1918, 10.1016/j.molonc.2015.10.018
Tran, 2015, Immunogenicity of somatic mutations in human gastrointestinal cancers, Science, 350, 1387, 10.1126/science.aad1253
Palmer, 2015, Cish actively silences TCR signaling in CD8+ T cells to maintain tumor tolerance, J. Exp. Med., 212, 2095, 10.1084/jem.20150304
Beane, 2015, Clinical scale zinc finger nuclease-mediated gene editing of PD-1 in tumor infiltrating lymphocytes for the treatment of metastatic melanoma, Mol. Ther., 23, 1380, 10.1038/mt.2015.71
Barrett, 2015, Chimeric antigen receptor- and TCR-modified T cells enter main street and wall street, J. Immunol., 195, 755, 10.4049/jimmunol.1500751
Fesnak, 2016, Engineered T cells: the promise and challenges of cancer immunotherapy, Nat. Rev. Cancer, 16, 566, 10.1038/nrc.2016.97
Garrido, 2016, The urgent need to recover MHC class I in cancers for effective immunotherapy, Curr. Opin. Immunol., 39, 44, 10.1016/j.coi.2015.12.007
Karpanen, 2015, T-cell receptor gene therapy e ready to go viral?, Mol. Oncol., 9, 2019, 10.1016/j.molonc.2015.10.006
Thomas, 2018, NY-ESO-1 based immunotherapy of cancer: current perspectives, Front. Immunol., 9, 947, 10.3389/fimmu.2018.00947
Milone, 2018, The pharmacology of T cell therapies, Mol. Ther. Methods Clin. Dev., 8, 210, 10.1016/j.omtm.2018.01.010
Zhao, 2019, Clinical trials of dual-targeted CAR T cells, donor-derived CAR T cells, and universal CAR T cells for acute lumphoid leukemia, J. Hematol. Oncol., 12, 17, 10.1186/s13045-019-0705-x
Zheng, 2018, Highly efficient base editing in bacteria using a Cas9-cytidine deaminase fusion, Commun. Biol., 1, 32, 10.1038/s42003-018-0035-5
Jin, 2016, Safe engineering of CAR T cells for adoptive cell therapy of cancer using long-term episomal gene transfer, EMBO Mol. Med., 8, 702, 10.15252/emmm.201505869
Hacein-Bey-Abina, 2008, Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1, J. Clin. Invest., 118, 3132, 10.1172/JCI35700
Hacein-Bey-Abina, 2003, LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1, Science, 302, 415, 10.1126/science.1088547
Avedillo Díez, 2011, Development of novel efficient SIN vectors with improved safety features for Wiskott Aldrich syndrome stem cell based gene therapy, Mol. Pharm., 8, 1525, 10.1021/mp200132u
Ott, 2006, Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1, Nat. Med., 12, 401, 10.1038/nm1393
Modlich, 2009, Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors, Mol. Ther., 17, 1919, 10.1038/mt.2009.179
Osborn, 2016, Evaluation of TCR gene editing achieved by TALENs, CRISPR/Cas9, and megaTAL Nucleases, Mol. Ther., 24, 570, 10.1038/mt.2015.197
Eyquem, 2017, Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection, Nature, 543, 113, 10.1038/nature21405
Qasim, 2017, Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells, Sci. Transl. Med., 9, eaaj2013, 10.1126/scitranslmed.aaj2013
Roth, 2018, Reprogramming human T cell function and specificity with non-viral genome targeting, Nature, 559, 405, 10.1038/s41586-018-0326-5
Smith, 2018, Posttransplant chimeric antigen receptor therapy, Blood, 131, 1045, 10.1182/blood-2017-08-752121
Gaudelli, 2017, Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage, Nature, 551, 464, 10.1038/nature24644
Komor, 2017, Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C: G-to-T: a base editors with higher efficiency and product purity, Sci Adv, 3, eaao4774, 10.1126/sciadv.aao4774
Ren, 2016, Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition, Clin. Cancer Res., 23, 2255, 10.1158/1078-0432.CCR-16-1300
Poirot, 2015, Multiplex genome-edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies, Cancer Res., 75, 3853, 10.1158/0008-5472.CAN-14-3321
Gomes-Silva, 2017, CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies, Blood, 130, 285, 10.1182/blood-2017-01-761320
Haanen, 2017, Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up, Ann. Oncol., 28, iv119, 10.1093/annonc/mdx225
Chong, 2017, PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: refueling the CAR, Blood, 129, 1039, 10.1182/blood-2016-09-738245
Locke, 2017, Phase 1 results from ZUMA-6: axicabtagene ciloleucel (axi-cel; KTE-C19) in combination with atezolizumab for the treatment of patients with refractory diffuse large B cell lymphoma (DLBCL), Blood, 130, 2826, 10.1182/blood.V130.Suppl_1.1547.1547
Jacobson, 2019, End of phase 1 results from Zuma-6: axicabtagene ciloleucel (Axi-Cel) in combination with atezolizumab for the treatment of patients with refractory diffuse large B cell lymphoma, Biol. Blood Marrow Transplant., 25, S173, 10.1016/j.bbmt.2018.12.314
Hu, 2019, CRISPR/Cas9-mediated PD-1 disruption enhances human mesothelintargeted CAR T cell effector functions, Cancer Immunol. Immunother., 68, 365077, 10.1007/s00262-018-2281-2
Rupp, 2017, CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells, Sci. Rep., 7, 737, 10.1038/s41598-017-00462-8
Cavazzana-Calvo, 2010, Transfusion independence and HMGA2 activation after gene therapy of human b-thalassaemia, Nature, 467, 318, 10.1038/nature09328
Cai, 2018, A universal approach to correct various HBB gene mutations in human stem cells for gene therapy of beta-thalassemia and sickle cell disease, Stem Cells Transl. Med., 7, 87, 10.1002/sctm.17-0066
Ou, 2016, The combination of CRISPR/Cas9 and iPSC technologies in the gene therapy of human β-thalassemia in mice, Sci. Rep., 6, 32463, 10.1038/srep32463
Wattanapanitch, 2018, One-step genetic correction of hemoglobin E/beta-thalassemia patient-derived iPSCs by the CRISPR/Cas9 system, Stem Cell Res. Ther., 9, 46, 10.1186/s13287-018-0779-3
Xie, 2014, Seamless gene correction of b-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac, Genome Res., 24, 1526, 10.1101/gr.173427.114
Patsali, 2019, Correction of IVS I-110 (G>A) b-thalassemia by CRISPR/Cas- and TALEN-mediated disruption of aberrant progenitor cells, Haematologica, 104, e497, 10.3324/haematol.2018.215178
Wienert, 2018, Wake-up sleepy gene: reactivating fetal globin for β-hemoglobinopathies, Trends Genet., 34, 927, 10.1016/j.tig.2018.09.004
Ye, 2016, Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia, Proc. Natl. Acad. Sci. U.S.A., 113, 10661, 10.1073/pnas.1612075113
Bjurström, 2016, Reactivating fetal hemoglobin expression in human adult erythroblasts through BCL11A knockdown using targeted endonucleases, Mol. Ther. Nucleic Acids, 5, e351, 10.1038/mtna.2016.52
Chang, 2017, Long-term engraftment and fetal globin induction upon BCL11A gene editing inbone-marrow-derived CD34+ hematopoietic stem and progenitor cells, Mol. Ther. Methods Clin. Dev., 4, 137, 10.1016/j.omtm.2016.12.009
Zhen, 2017, Oncogenic human papillomavirus: application of CRISPR/Cas9 therapeutic strategies for cervical cancer, Cell. Physiol. Biochem., 44, 2455, 10.1159/000486168
Ren, 2019, An effective and biocompatible polyethylenimine based vaginal suppository for gene delivery, Nanomedicine, 20, 101994, 10.1016/j.nano.2019.03.016
Ding, 2014, Zinc finger nucleases targeting the human papillomavirus E7 oncogene induce E7 disruption and a transformed phenotype in HPV16/18-positive cervical cancer cells, Clin. Cancer Res., 20, 6495, 10.1158/1078-0432.CCR-14-0250
Hu, 2015, TALEN-mediated targeting of HPV oncogenes ameliorates HPV-related cervical malignancy, J. Clin. Invest., 125, 425, 10.1172/JCI78206
Lao, 2018, HPV oncogene manipulation using nonvirally delivered CRISPR/Cas9 or Natronobacterium gregoryi argonaute, Adv. Sci., 5, 1700540, 10.1002/advs.201700540
Hsu, 2018, Targeting HPV16 DNA using CRISPR/Cas inhibits anal cancer growth in vivo, Future Virol., 13, 475, 10.2217/fvl-2018-0010
Yoshiba, 2019, CRISPR/Cas9-mediated cervical cancer treatment targeting human papillomavirus E6, Oncol. Lett., 17, 2197
Li, 2011, In vivo genome editing restores haemostasis in a mouse model of haemophilia, Nature, 475, 217, 10.1038/nature10177
Anguela, 2013, Robust ZFN-mediated genome editing in adult hemophilic mice, Blood, 122, 3283, 10.1182/blood-2013-04-497354
Sharma, 2015, In vivo genome editing of the albumin locus as a platform for protein replacement therapy, Blood, 126, 1777, 10.1182/blood-2014-12-615492
Zong, 2017, Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion, Nat. Biotechnol., 35, 438, 10.1038/nbt.3811
Sivalingam, 2016, Multidimensional genome-wide analyses show accurate FVIII integration by ZFN in primary human cells, Mol. Ther., 24, 607, 10.1038/mt.2015.223
Ou, 2019, ZFN-mediated in vivo genome editing corrects murine Hurler Syndrome, Mol. Ther., 27, 178, 10.1016/j.ymthe.2018.10.018
Laoharawee, 2018, Dose-dependent prevention of metabolic and neurologic disease in murine MPS II by ZFN-mediated in vivo genome editing, Mol. Ther., 26, 1127, 10.1016/j.ymthe.2018.03.002
Sheridan, 2018, Sangamo’s landmark genome editing trial gets mixed reception, Nat. Biotechnol., 36, 907, 10.1038/nbt1018-907
Maeder, 2019, Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10, Nat. Med., 25, 229, 10.1038/s41591-018-0327-9
Dominguez, 2016, Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation, Nat. Rev. Mol. Cell Biol., 17, 5, 10.1038/nrm.2015.2
Thakore, 2016, Editing the epigenome: technologies for programmable transcriptional modulation and epigenetic regulation, Nat. Methods, 13, 127, 10.1038/nmeth.3733
Hong, 2018, CRISPR in personalized medicine: industry perspectives in gene editing, Semin. Perinatol., 42, 501, 10.1053/j.semperi.2018.09.008
Booth, 2016, Treating immunodeficiency through HSC Gene iherapy, Trends Mol. Med., 22, 317, 10.1016/j.molmed.2016.02.002
Genovese, 2014, Targeted genome editing in human repopulating haematopoietic stem cells, Nature, 510, 235, 10.1038/nature13420
Pavel-Dinu, 2019, Gene correction for SCID-X1 in long-term hematopoietic stem cells, Nat. Commun., 10, 10.1038/s41467-019-13620-5
Schiroli, 2017, Preclinical modeling highlights the therapeutic potential of hematopoietic stem cell gene editing for correction of SCID-X1, Sci. Transl. Med., 9, eean0820, 10.1126/scitranslmed.aan0820
De Ravin, 2017, CRISPR-Cas9 gene repair of hematopoietic stem cells from patients with X-linked chronic granulomatous disease, Sci. Transl. Med., 9, eaah3480, 10.1126/scitranslmed.aah3480
De Ravin, 2016, Targeted gene addition in human CD34+ hematopoietic cells for correction of X-linked chronic granulomatous disease, Nat. Biotechnol., 34, 424, 10.1038/nbt.3513
Dreyer, 2015, TALEN-mediated functional correction of X-linked chronic granulomatous disease in patient-derived induced pluripotent stem cells, Biomaterials, 69, 191, 10.1016/j.biomaterials.2015.07.057
Flynn, 2015, CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells, Exp. Hematol., 43, 838, 10.1016/j.exphem.2015.06.002
Merling, 2015, An AAVS1-targeted minigene platform for correction of iPSCs from all five types of chronic granulomatous disease, Mol. Ther., 23, 147, 10.1038/mt.2014.195
Sürün, 2018, High efficiency gene correction in hematopoietic cells by donor-template-free CRISPR/Cas9 genome editing, Mol. Ther. Nucleic Acids, 10, 1, 10.1016/j.omtn.2017.11.001
Gutierrez-Guerrero, 2018, Comparison of zinc finger nucleases versus CRISPR-specific nucleases for genome editing of the Wiskott-Aldrich Syndrome locus, Hum. Gene Ther., 29, 366, 10.1089/hum.2017.047
Rodrigues, 2018, Pharmaceutical development of AAV-based gene therapy products for the eye, Pharm. Res., 36, 29, 10.1007/s11095-018-2554-7
Trapani, 2018, Seeing the light after 25 years of retinal gene therapy, Trends Mol. Med., 24, 669, 10.1016/j.molmed.2018.06.006
McCullough, 2019, Somatic gene editing of GUCY2D by AAV-CRISPR/Cas9 alters retinal structure and function in mouse and macaque, Hum. Gene Ther., 30, 571, 10.1089/hum.2018.193
Xu, 2018, Translation of CRISPR genome surgery to the bedside for retinal diseases, Front. Cell Dev. Biol., 6, 46, 10.3389/fcell.2018.00046
Yu, 2018, In vivo applications of CRISPR-based genome editing in the retina, Front. Cell Dev. Biol., 6, 53, 10.3389/fcell.2018.00053
Fuster-García, 2017, USH2A gene editing using the CRISPR system, Mol. Ther. Nucleic Acids, 8, 529, 10.1016/j.omtn.2017.08.003
Mianné, 2016, Correction of the auditory phenotype in C57BL/6N mice via CRISPR/Cas9-mediated homology directed repair, Genome Med., 8, 16, 10.1186/s13073-016-0273-4
Gao, 2018, Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents, Nature, 553, 217, 10.1038/nature25164
Zuris, 2015, Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo, Nat. Biotechnol., 33, 73, 10.1038/nbt.3081
Stephens, 2018, Targeted in vivo knock-in of human alpha-1-antitrypsin cDNA using adenoviral delivery of CRISPR/Cas9, Gene Ther., 25, 139, 10.1038/s41434-018-0003-1
Bjursell, 2018, Therapeutic genome editing with CRISPR/Cas9 in a humanized mouse model ameliorates α1-antitrypsin deficiency phenotype, EBioMedicine, 29, 104, 10.1016/j.ebiom.2018.02.015
Shen, 2018, Amelioration of alpha-1 antitrypsin deficiency diseases with genome editing in transgenic mice, Hum. Gene Ther., 29, 861, 10.1089/hum.2017.227
Song, 2018, In vivo genome editing partially restores alpha 1-antitrypsin in a murine model of AAT deficiency, Hum. Gene Ther., 29, 853, 10.1089/hum.2017.225
Finn, 2018, A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing, Cell Rep., 22, 2227, 10.1016/j.celrep.2018.02.014
Yang, 2018, The potential and challenges of CRISPR-Cas in eradication of hepatitis B virus covalently closed circular DNA, Virus Res., 244, 304, 10.1016/j.virusres.2017.06.010
Gilani, 2018, Theimplication ofCRISPR/Cas9genomeediting technology in combating human oncoviruses, J. Med. Virol., 91, 1, 10.1002/jmv.25292
Moyo, 2017, Advances with using CRISPR/Cas-mediated gene editing to treatinfections with hepatitis B virus and hepatitis C virus, Virus Res., 244, 311, 10.1016/j.virusres.2017.01.003
Paschon, 2020, CRISPR, Prime Editing, Optogenetics, and DREADDs: new therapeutic approaches provided by emerging technologies in the treatment of spinal cord injury, Mol. Neurobiol., 57, 2085, 10.1007/s12035-019-01861-w
Sondhi, 2017, Genetic modification of the lung directed toward treatment of human disease, Hum. Gene Ther., 28, 3, 10.1089/hum.2016.152
Villate-Beitia, 2017, Gene delivery to the lungs: pulmonary gene therapy for cystic fibrosis, Drug Dev. Ind. Pharm., 43, 1071, 10.1080/03639045.2017.1298122
Xia, 2018, Overcoming the undesirable CRISPR-Cas9 expression in gene correction, Mol. Ther. Nucleic Acids, 13, 699, 10.1016/j.omtn.2018.10.015
Ruan, 2019, Efficient gene editing at major CFTR mutation loci, Mol. Ther. Nucleic Acids, 16, 73, 10.1016/j.omtn.2019.02.006
Sanz, 2017, Cas9/gRNA targeted excision of cystic fibrosiscausing deep-intronic splicing mutations restores normal splicing of CFTR mRNA, PLoS ONE, 12, e0184009, 10.1371/journal.pone.0184009
Bednarski, 2016, Targeted integration of a super-exon into the CFTR locus leads to functional correction of a cystic fibrosis cell line model, PLoS ONE, 11, e0161072, 10.1371/journal.pone.0161072
Schwank, 2013, Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients, Cell Stem Cell, 13, 653, 10.1016/j.stem.2013.11.002
Crane, 2015, Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells, Stem Cell Rep., 4, 569, 10.1016/j.stemcr.2015.02.005
Firth, 2015, Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs, Cell Rep., 12, 1385, 10.1016/j.celrep.2015.07.062
Lee, 2012, Correction of the ΔF508 mutation in the cystic fibrosis transmembrane conductance regulator gene by zinc-finger nuclease homology-directed repair, BioResearch, 1, 99, 10.1089/biores.2012.0218
Min, 2019, CRISPR correction of Duchenne muscular dystrophy, Annu. Rev. Med., 70, 239, 10.1146/annurev-med-081117-010451
Amoasii, 2018, Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy, Science, 362, 86, 10.1126/science.aau1549
Nelson, 2019, Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy, Nat. Med., 25, 427, 10.1038/s41591-019-0344-3
Yang, 2019, The CRIPSR/Cas gene-editing system-an immature but useful toolkit for experimental and clinical medicine, Anim. Model Exp. Med., 2, 5, 10.1002/ame2.12061
Ormond, 2017, Human germline genome editing, Am. J. Hum. Genet., 101, 167, 10.1016/j.ajhg.2017.06.012
Long, 2014, Prevention of muscular dystrophy in mice by CRISPR/Cas9–mediated editing of germline DNA, Science, 345, 1184, 10.1126/science.1254445
German, 2019, Therapeutic genome editing in cardiovascular diseases, J. Am. Coll. Cardiol. Basic Trans. Sci., 4, 122
Ma, 2017, Correction of a pathogenic gene mutation in human embryos, Nature, 548, 413, 10.1038/nature23305
Tang, 2017, CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein, Mol. Genet. Genomics, 292, 252, 10.1007/s00438-017-1299-z
Liang, 2015, CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes, Protein Cell, 6, 363, 10.1007/s13238-015-0153-5
Fogarty, 2017, Genome editing reveals a role for OCT4 in human embryogenesis, Nature, 550, 67, 10.1038/nature24033
Greely, 2019, CRISPR’d babies: human germline genome editing in the ‘He Jiankui affair’, J. Law Biosci., 6, 111, 10.1093/jlb/lsz010
Ranisch, 2020, Germline genome editing versus preimplantation genetic diagnosis: Is there a case in favour of germline interventions?, Bioethics, 34, 60, 10.1111/bioe.12635
Cross, 2017, CRISPR’s breakthrough problem, Chem. Eng. News, 95, 28
Glass, 2018, Engineering the delivery system for CRISPR-based genome Editing, Trends Biotechnol., 36, 173, 10.1016/j.tibtech.2017.11.006
Chew, 2018, Immunity to CRISPR Cas9 and Cas12a therapeutics, Wiley Interdiscip. Rev. Syst. Biol. Med., 10, e1408, 10.1002/wsbm.1408
Barbalat, 2011, Nucleic acid recognition by the innate immune system, Annu. Rev. Immunol., 29, 185, 10.1146/annurev-immunol-031210-101340
Kim, 2018, CRISPR RNAs trigger innate immune responses in human cells, Genome Res., 28, 367, 10.1101/gr.231936.117
Wienert, 2018, In vitro-transcribed guide RNAs trigger an innate immune response via the RIG-I pathway, PLoS Biol., 16, e2005840, 10.1371/journal.pbio.2005840
Charlesworth, 2019, Identification of preexisting adaptive immunity to Cas9 proteins in humans, Nat. Med., 25, 249, 10.1038/s41591-018-0326-x
Simhardri, 2018, Prevalence of pre-existing antibodies to CRISPR-associated nuclease Cas9 in the USA population, Mol. Ther. Methods Clin. Dev., 10, 105, 10.1016/j.omtm.2018.06.006
Chew, 2016, A multifunctional AAV–CRISPR–Cas9 and its host response, Nat. Methods, 13, 868, 10.1038/nmeth.3993
Wagner, 2019, High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population, Nat. Med., 25, 242, 10.1038/s41591-018-0204-6
Zhang, 2015, Off-target effects in CRISPR/Cas9-mediated genome engineering, Mol. Ther. Nucleic Acids, 4, e264, 10.1038/mtna.2015.37
Florea, 2011, Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects, Cancers (Basel), 3, 1351, 10.3390/cancers3011351
Gkazi, 2019, Quantifying CRISPR off-target effects, Emerg. Top. Life Sci., 3, 327, 10.1042/ETLS20180146
Akcakaya, 2018, In vivo CRISPR editing with no detectable genome-wide off-target mutations, Nature, 561, 416, 10.1038/s41586-018-0500-9
Wienert, 2019, Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq, Science, 364, 286, 10.1126/science.aav9023
Harewood, 2014, The impact of chromosomal rearrangements on regulation of gene expression, Hum. Mol. Genet., 23, R76, 10.1093/hmg/ddu278
Hasty, 2014, Chromosomal rearrangements in cancer detection and potential causal mechanisms, Mol. Cell. Oncol., 1, e29904, 10.4161/mco.29904
Giannoukos, 2018, UDiTaS, a genome editing detection method for indels and genome rearrangements, BMC Genomics, 19, 212, 10.1186/s12864-018-4561-9
Jung, 2017, Massively parallel biophysical analysis of CRISPR-Cas complexes on next generation sequencing chips, Cell, 170, 35, 10.1016/j.cell.2017.05.044
Smits, 2019, Biological plasticity rescues target activity in CRISPR knock outs, Nat. Methods., 16, 1087, 10.1038/s41592-019-0614-5
Ihry, 2018, p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells, Nat. Med., 24, 939, 10.1038/s41591-018-0050-6
Haapaniemi, 2018, CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response, Nat. Med., 24, 927, 10.1038/s41591-018-0049-z
Newton, 2019, DNA stretching induces Cas9 off-target activity, Nat. Struct. Mol. Biol., 26, 185, 10.1038/s41594-019-0188-z
Aryal, 2018, CRISPR/Cas9 can mediate high-efficiency off-target mutations in mice in vivo, Cell Death. Dis., 9, 1099, 10.1038/s41419-018-1146-0
Yamada, 2017, Crystal structure of the minimal Cas9 from Campylobacter jejuni reveals the molecular diversity in the CRISPR-Cas9 systems, Mol. Cell, 65, 1109, 10.1016/j.molcel.2017.02.007
Jiang, 2017, CRISPR-Cas9 structures and mechanisms, Annu. Rev. Biophys., 46, 505, 10.1146/annurev-biophys-062215-010822
Nishimasu, 2015, Crystal structure of Staphylococcus aureus Cas9, Cell, 162, 1113, 10.1016/j.cell.2015.08.007
Nishimasu, 2014, Crystal structure of Cas9 in complex with guide RNA and target DNA, Cell, 156, 935, 10.1016/j.cell.2014.02.001
Yang, 2018, The conformational dynamics of Cas9 governing DNA cleavage are revealed by single-molecule FRET, Cell Rep., 22, 372, 10.1016/j.celrep.2017.12.048
Slaymaker, 2016, Rationally engineered Cas9 nucleases with improved specificity, Science, 351, 84, 10.1126/science.aad5227
Kleinstiver, 2016, High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects, Nature, 529, 490, 10.1038/nature16526
Chen, 2017, Enhanced proofreading governs CRISPR-Cas9 targeting accuracy, Nature, 550, 407, 10.1038/nature24268
Casini, 2018, A highly specific SpCas9 variant is identified by in vivo screening in yeast, Nat. Biotechnol., 36, 265, 10.1038/nbt.4066
Vakulskas, 2018, A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells, Nat. Med., 24, 1216, 10.1038/s41591-018-0137-0
Hu, 2018, Evolved Cas9 variants with broad PAM compatibility and high DNA specificity, Nature, 556, 57, 10.1038/nature26155
Tsai, 2014, Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing, Nat. Biotechnol., 32, 569, 10.1038/nbt.2908
Guilinger, 2014, Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification, Nat. Biotechnol., 32, 577, 10.1038/nbt.2909
Mali, 2013, CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering, Nat. Biotechnol., 31, 833, 10.1038/nbt.2675
Ran, 2013, Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity, Cell, 154, 1380, 10.1016/j.cell.2013.08.021
Fu, 2014, Improving CRISPR-Cas nuclease specificity using truncated guide RNAs, Nat. Biotechnol., 32, 279, 10.1038/nbt.2808
Bolukbasi, 2015, DNA-binding-domain fusions enhance the targeting range and precision of Cas9, Nat. Methods, 12, 1150, 10.1038/nmeth.3624
Maji, 2017, Multidimensional chemical control of CRISPR-Cas9, Nat. Chem. Biol., 13, 9, 10.1038/nchembio.2224
Xu, 2015, Sequence determinants of improved CRISPR sgRNA design, Genome Res., 25, 1147, 10.1101/gr.191452.115
Wu, 2014, Target specificity of the CRISPR-Cas9 system, Quant. Biol., 2, 59, 10.1007/s40484-014-0030-x
Cui, 2018, Review of CRISPR/Cas9 sgRNA design tools, Interdiscip. Sci., 10, 455, 10.1007/s12539-018-0298-z
Hendel, 2015, Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells, Nat. Biotechnol., 33, 985, 10.1038/nbt.3290
Yin, 2017, Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing, Nat. Biotechnol., 35, 1179, 10.1038/nbt.4005
Ryan, 2018, Improving CRISPR-Cas specificity with chemical modifications in single-guide RNAs, Nucleic Acids Res., 46, 792, 10.1093/nar/gkx1199
Mir, 2018, Heavily and fully modified RNAs guide efficient SpyCas9-mediated genome editing, Nat. Commun., 9, 2641, 10.1038/s41467-018-05073-z
O’Reilly, 2019, Extensive CRISPR RNA modification reveals chemical compatibility and structure-activity relationships for Cas9 biochemical activity, Nucleic Acids Res., 47, 546
Kocak, 2019, Increasing the specificity of CRISPR systems with engineered RNA secondary structures, Nat. Biotechnol., 37, 657, 10.1038/s41587-019-0095-1
Strecker, 2019, RNA-guided DNA insertion with CRISPR-associated transposases, Science, 365, 48, 10.1126/science.aax9181
Klompe, 2019, Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration, Nature, 571, 219, 10.1038/s41586-019-1323-z
Guirouilh-Barbat, 2004, Impact of the KU80 pathway on NHEJ-induced genome rearrangements in mammalian cells, Mol. Cell, 14, 611, 10.1016/j.molcel.2004.05.008
Aird, 2018, Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template, Commun. Biol., 1, 54, 10.1038/s42003-018-0054-2
Lin, 2014, Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery, Elife, 3, e04766, 10.7554/eLife.04766
Komor, 2016, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, Nature, 533, 420, 10.1038/nature17946
Kim, 2017, Highly efficient RNA-guided base editing in mouse embryos, Nat. Biotechnol., 35, 435, 10.1038/nbt.3816
Ma, 2018, Highly efficient and precise base editing by engineered dCas9-guide tRNA adenosine deaminase in rats, Cell Discov., 4, 39, 10.1038/s41421-018-0047-9
Yeh, 2018, In vivo base editing of post-mitotic sensory cells, Nat. Commun., 9, 2184, 10.1038/s41467-018-04580-3
Lee, 2018, Targeting fidelity of adenine and cytosine base editors in mouse embryos, Nat. Commun., 9, 4804, 10.1038/s41467-018-07322-7
Tan, 2019, Engineering of high-precision base editors for site-specific single nucleotide replacement, Nat. Commun., 10, 439, 10.1038/s41467-018-08034-8
Liang, 2019, Genome-wide profiling of adenine base editor specificity by EndoV-seq, Nat. Commun., 10, 67, 10.1038/s41467-018-07988-z
Zafra, 2018, Optimized base editors enable efficient editing in cells, organoids and mice, Nat. Biotechnol., 36, 888, 10.1038/nbt.4194
Thuronyi, 2019, Continuous evolution of base editors with expanded target compatibility and improved activity, Nat. Biotechnol., 37, 1070, 10.1038/s41587-019-0193-0
Liu, 2018, Intrinsic nucleotide preference of diversifying base editors guides antibody ex vivo affinity maturation, Cell Rep., 25, 884, 10.1016/j.celrep.2018.09.090
Zuo, 2019, Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos, Science, 364, 289, 10.1126/science.aav9973
Jin, 2019, Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice, Science, 364, 292, 10.1126/science.aaw7166
Grunewald, 2019, Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors, Nature, 569, 433, 10.1038/s41586-019-1161-z
Kim, 2019, Genome-wide target specificity of CRISPR RNA-guided adenine base editors, Nat. Biotechnol., 37, 430, 10.1038/s41587-019-0050-1
Terns, 2018, CRISPR-based technologies: impact of RNA-targeting systems, Mol. Cell, 72, 404, 10.1016/j.molcel.2018.09.018
O'Connell, 2014, Programmable RNA recognition and cleavage by CRISPR/Cas9, Nature, 516, 263, 10.1038/nature13769
Nelles, 2016, Programmable RNA tracking in live cells with CRISPR/Cas9, Cell, 165, 488, 10.1016/j.cell.2016.02.054
Liu, 2016, Targeting cellular mRNAs translation by CRISPR-Cas9, Sci. Rep., 6, 29652, 10.1038/srep29652
Batra, 2017, Elimination of Toxic Microsatellite Repeat Expansion RNA by RNA-Targeting Cas9, Cell, 170, 899e10, 10.1016/j.cell.2017.07.010
Dugar, 2018, CRISPR RNA-Dependent Binding and Cleavage of Endogenous RNAs by the Campylobacter jejuni Cas9, Mol. Cell, 69, 893e7, 10.1016/j.molcel.2018.01.032
Price, 2015, Cas9-mediated targeting of viral RNA in eukaryotic cells, Proc. Natl. Acad. Sci. U. S. A., 112, 6164, 10.1073/pnas.1422340112
Rousseau, 2018, Programmable RNA Cleavage and Recognition by a Natural CRISPR-Cas9 System from Neisseria meningitidis, Mol. Cell, 69, 906e4, 10.1016/j.molcel.2018.01.025
Sampson, 2013, A CRISPR/Cas system mediates bacterial innate immune evasion and virulence, Nature, 497, 254, 10.1038/nature12048
Abudayyeh, 2016, C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector, Science, 353, aaf5573, 10.1126/science.aaf5573
Konermann, 2018, Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors, Cell, 173, 665, 10.1016/j.cell.2018.02.033
Qi, 2013, Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression, Cell, 152, 1173, 10.1016/j.cell.2013.02.022
Gilbert, 2013, CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes, Cell, 154, 442, 10.1016/j.cell.2013.06.044
Konermann, 2013, Optical control of mammalian endogenous transcription and epigenetic states, Nature, 500, 472, 10.1038/nature12466
Margolin, 1994, Kruppel-associated boxes are potent transcriptional repression domains, Proc. Natl. Acad. Sci. U. S. A., 91, 4509, 10.1073/pnas.91.10.4509
Lupo, 2013, KRAB-Zinc Finger Proteins: A Repressor Family Displaying Multiple Biological Functions, Curr. Genomics, 14, 268, 10.2174/13892029113149990002
Gasperini, 2019, A Genome-wide Framework for Mapping Gene Regulation via Cellular Genetic Screens, Cell, 176, 1516, 10.1016/j.cell.2019.02.027
Mandegar, 2016, CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs, Cell Stem Cell, 18, 541, 10.1016/j.stem.2016.01.022
Libby, 2018, Spatiotemporal mosaic self-patterning of pluripotent stem cells using CRISPR interference, Elife, 7, 10.7554/eLife.36045
Kearns, 2014, Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells, Development, 141, 219, 10.1242/dev.103341
Zheng, 2018, CRISPR interference-based specific and efficient gene inactivation in the brain, Nat. Neurosci., 21, 447, 10.1038/s41593-018-0077-5
Yeo, 2018, An enhanced CRISPR repressor for targeted mammalian gene regulation, Nat. Methods, 15, 611, 10.1038/s41592-018-0048-5
Maeder, 2013, CRISPR RNA-guided activation of endogenous human genes, Nat. Methods, 10, 977, 10.1038/nmeth.2598
Perez-Pinera, 2013, RNA-guided gene activation by CRISPR-Cas9-based transcription factors, Nat. Methods, 10, 973, 10.1038/nmeth.2600
La Russa, 2015, The new state of the art: Cas9 for gene activation and repression, Mol. Cell. Biol., 35, 3800, 10.1128/MCB.00512-15
Cheng, 2013, Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system, Cell Res., 23, 1163, 10.1038/cr.2013.122
Gilbert, 2014, Genome-scale CRISPR-mediated control of gene repression and activation, Cell, 159, 647, 10.1016/j.cell.2014.09.029
Tanenbaum, 2014, A protein-tagging system for signal amplification in gene expression and fluorescence imaging, Cell, 159, 635, 10.1016/j.cell.2014.09.039
Chavez, 2015, Highly efficient Cas9-mediated transcriptional programming, Nat. Methods, 12, 326, 10.1038/nmeth.3312
Konermann, 2015, Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex, Nature, 517, 583, 10.1038/nature14136
Peabody, 1993, The RNA binding site of bacteriophage MS2 coat protein, EMBO J., 12, 595, 10.1002/j.1460-2075.1993.tb05691.x
Chavez, 2016, Comparison of Cas9 activators in multiple species, Nat. Methods, 13, 563, 10.1038/nmeth.3871
Liao, 2017, In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation, Cell, 171, 1495, 10.1016/j.cell.2017.10.025
Kretzmann, 2019, Tumour suppression by targeted intravenous nonviral CRISPRa using dendritic polymers, Chem. Sci., 10, 7718, 10.1039/C9SC01432B
Matharu, 2019, CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency, Science, 363, eaau0629, 10.1126/science.aau0629
Smith, 2013, DNA methylation: roles in mammalian development, Nat. Rev. Genet., 14, 204, 10.1038/nrg3354
Wu, 2014, Reversing DNA methylation: mechanisms, genomics, and biological functions, Cell, 156, 45, 10.1016/j.cell.2013.12.019
Attwood, 2002, DNA methylation and the regulation of gene transcription, Cell. Mol. Life Sci., 59, 241, 10.1007/s00018-002-8420-z
Siddique, 2013, Targeted methylation and gene silencing of VEGF-A in human cells by using a designed Dnmt3a-Dnmt3L single-chain fusion protein with increased DNA methylation activity, J. Mol. Biol., 425, 479, 10.1016/j.jmb.2012.11.038
Bernstein, 2015, TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts, J. Clin. Invest., 125, 1998, 10.1172/JCI77321
Vojta, 2016, Repurposing the CRISPR-Cas9 system for targeted DNA methylation, Nucleic Acids Res., 44, 5615, 10.1093/nar/gkw159
McDonald, 2016, Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation, Biol. Open, 5, 866, 10.1242/bio.019067
Liu, 2016, Editing DNA methylation in the mammalian genome, Cell, 167, 233, 10.1016/j.cell.2016.08.056
Amabile, 2016, Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing, Cell, 167, 219, 10.1016/j.cell.2016.09.006
Huang, 2017, DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A, Genome Biol., 18, 176, 10.1186/s13059-017-1306-z
Pflueger, 2018, A modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9-DNMT3A constructs, Genome Res., 28, 1193, 10.1101/gr.233049.117
Stepper, 2017, Efficient targeted DNA methylation with chimeric dCas9-Dnmt3a-Dnmt3L methyltransferase, Nucleic Acids Res., 45, 1703, 10.1093/nar/gkw1112
Galonska, 2018, Genome-wide tracking of dCas9-methyltransferase footprints, Nat. Commun., 9, 597, 10.1038/s41467-017-02708-5
Lin, 2018, Genome-wide determination of on-target and off-target characteristics for RNA-guided DNA methylation by dCas9 methyltransferases, Gigascience, 7, 1, 10.1093/gigascience/giy011
Xiong, 2017, Targeted DNA methylation in human cells using engineered dCas9-methyltransferases, Sci. Rep., 7, 6732, 10.1038/s41598-017-06757-0
Lei, 2017, Targeted DNA methylation in vivo using an engineered dCas9-MQ1 fusion protein, Nat. Commun., 8, 16026, 10.1038/ncomms16026
Maeder, 2013, Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins, Nat. Biotechnol., 31, 1137, 10.1038/nbt.2726
Choudhury, 2016, CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter, Oncotarget, 7, 46545, 10.18632/oncotarget.10234
Morita, 2016, Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions, Nat. Biotechnol., 34, 1060, 10.1038/nbt.3658
Xu, 2016, A CRISPR-based approach for targeted DNA demethylation, Cell Discov., 2, 16009, 10.1038/celldisc.2016.9
Gu, 2018, DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells, Genome Biol., 19, 88, 10.1186/s13059-018-1464-7
Bannister, 2011, Regulation of chromatin by histone modifications, Cell Res., 21, 381, 10.1038/cr.2011.22
Hilton, 2015, Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers, Nat. Biotechnol., 33, 510, 10.1038/nbt.3199
Kwon, 2017, Locus-specific histone deacetylation using a synthetic CRISPR-Cas9-based HDAC, Nat. Commun., 8, 15315, 10.1038/ncomms15315
Shi, 2004, Histone demethylation mediated by the nuclear amine oxidase homolog LSD1, Cell, 119, 941, 10.1016/j.cell.2004.12.012
Whyte, 2012, Enhancer decommissioning by LSD1 during embryonic stem cell differentiation, Nature, 482, 221, 10.1038/nature10805
Martin, 2005, The diverse functions of histone lysine methylation, Nat. Rev. Mol. Cell Biol., 6, 838, 10.1038/nrm1761
Mendenhall, 2013, Locus-specific editing of histone modifications at endogenous enhancers, Nat. Biotechnol., 31, 1133, 10.1038/nbt.2701
Kearns, 2015, Functional annotation of native enhancers with a Cas9-histone demethylase fusion, Nat. Methods, 12, 401, 10.1038/nmeth.3325
Wu, 2013, Molecular basis for the regulation of the H3K4 methyltransferase activity of PRDM9, Cell Rep., 5, 13, 10.1016/j.celrep.2013.08.035
Cano-Rodriguez, 2016, Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner, Nat. Commun., 7, 12284, 10.1038/ncomms12284