Gene Therapy Strategies for Hepatocellular Carcinoma

Journal of Biomedical Science - Tập 13 - Trang 453-468 - 2006
Lih-Hwa Hwang1
1Hepatitis Research Center, National Taiwan University Hospital and Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan, R.O.C

Tóm tắt

Hepatocellular carcinoma (HCC) is one of the most frequent cancers worldwide. Effective therapy to this cancer is currently lacking, creating an urgent need for new therapeutic strategies for HCC. Gene therapy approach that relies on the transduction of cells with genetic materials, such as apoptotic genes, suicide genes, genes coding for antiangiogenic factors or immunomodulatory molecules, small interfering RNA (siRNA), or oncolytic viral vectors, may provide a promising strategy. The aforementioned strategies have been largely evaluated in the animal models with HCC or liver metastasis. Due to the diversity of vectors and therapeutic genes, being used alone or in combination, gene therapy approach may generate great beneficial effects to control the growth of tumors within the liver.

Tài liệu tham khảo

Schafer D.F., Sorrell M.F. (1999) Hepatocellular carcinoma. Lancet 353:1253–1257 Yu M.C., Yuan J.M., Govindarajan S., Ross R.K. (2000) Epidemiology of hepatocellular carcinoma. Can. J. Gastroenterol. 14:703–709 Colombo M. (1992) Hepatocellular carcinoma. J. Hepatol. 15:225–236 Mazzaferro V., Regalia E., Doci R., Andreola S., Pulvirenti A., Bozzetti F., Montalto F., Ammatuna M., Morabito A., Gennari L. (1996) Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N. Engl. J. Med. 334: 693–699 Gozzetti G., Belli L., Capussotti L., Di Carlo V., Gennari L., Faccioli A.M., Mazziotti A., Spina P. (1992) Liver resection for hepatocellular carcinoma in cirrhotic patients. Ital. J. Gastroenterol. 24:105–110 Livraghi T., Giorgio A., Marin G., Salmi A., de Sio I., Bolondi L., Pompili M., Brunello F., Lazzaroni S., Torzilli G., et al. (1995) Hepatocellular carcinoma and cirrhosis in 746 patients: long-term results of percutaneous ethanol injection. Radiology 197:101–108 Pelletier G., Ducreux M., Gay F., Luboinski M., Hagege H., Dao T., Van Steenbergen W., Buffet C., Rougier P., Adler M., Pignon J.P., Roche A. (1998) Treatment of unresectable hepatocellular carcinoma with lipiodol chemoembolization: a multicenter randomized trial. Groupe CHC. J. Hepatol. 29:129–134 Farmer D.G., Busuttil R.W. (1994) The role of multimodal therapy in the treatment of hepatocellular carcinoma. Cancer 73:2669–2670 Levin B., Amos C. (1995) Therapy of unresectable hepatocellular carcinoma. N. Engl. J. Med. 332:1294–1296 Venook A.P. (1994) Treatment of hepatocellular carcinoma: too many options? J. Clin. Oncol. 12:1323–1334 Verma I.M., Weitzman M.D. (2005) Gene therapy: twenty-first century medicine. Annu. Rev. Biochem. 74:711–738 Niidome T., Huang L. (2002) Gene therapy progress and prospects: nonviral vectors. Gene Ther. 9:1647–1652 Sinkovics J., Horvath J. (1993) New developments in the virus therapy of cancer: a historical review. Intervirology 36:193–214 Newman W., Southam C.M. (1954) Virus treatment in advanced cancer; a pathological study of fifty-seven cases. Cancer 7:106–118 Cassel W.A., Garrett R.E. (1965) Newcastle disease virus as an antineoplastic agent. Cancer 18:863–868 Strong J.E., Coffey M.C., Tang D., Sabinin P., Lee P.W. (1998) The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J. 17:3351–3362 Strong J.E., Lee P.W. (1996) The v-erbB oncogene confers enhanced cellular susceptibility to reovirus infection. J. Virol. 70:612–616 O’Shea C.C. (2005) Viruses – seeking and destroying the tumor program. Oncogene 24:7640–7655 Parato K.A., Senger D., Forsyth P.A., Bell J.C. (2005) Recent progress in the battle between oncolytic viruses and tumours. Nat. Rev. Cancer 5:965–976 Mullen J.T., Tanabe K.K. (2002) Viral oncolysis. Oncologist 7:106–119 Tollefson A.E., Ryerse J.S., Scaria A., Hermiston T.W., Wold W.S. (1996) The E3-11.6-kDa adenovirus death protein (ADP) is required for efficient cell death: characterization of cells infected with adp mutants. Virology 220:152–162 Shtrichman R., Kleinberger T. (1998) Adenovirus type 5 E4 open reading frame 4 protein induces apoptosis in transformed cells. J. Virol. 72:2975–2982 Gooding L.R. (1994) Regulation of TNF-mediated cell death and inflammation by human adenoviruses. Infect. Agents Dis. 3:106–115 Toda M., Rabkin S.D., Kojima H., Martuza R.L. (1999) Herpes simplex virus as an in situ cancer vaccine for the induction of specific anti-tumor immunity. Hum. Gene Ther. 10:385–393 Khuri F.R., Nemunaitis J., Ganly I., Arseneau J., Tannock I.F., Romel L., Gore M., Ironside J., MacDougall R.H., Heise C., Randlev B., Gillenwater A.M., Bruso P., Kaye S.B., Hong W.K., Kirn D.H. (2000) A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat. Med. 6:879–885 Wildner O., Blaese R.M., Morris J.C. (1999) Therapy of colon cancer with oncolytic adenovirus is enhanced by the addition of herpes simplex virus-thymidine kinase. Cancer Res. 59:410–413 Andreansky S., He B., van Cott J., McGhee J., Markert J.M., Gillespie G.Y., Roizman B., Whitley R.J. (1998) Treatment of intracranial gliomas in immunocompetent mice using herpes simplex viruses that express murine interleukins. Gene Ther. 5:121–130 Parker J.N., Gillespie G.Y., Love C.E., Randall S., Whitley R.J., Markert J.M. (2000) Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors. Proc. Natl. Acad. Sci. USA 97:2208–2213 Bischoff J.R., Kirn D.H., Williams A., Heise C., Horn S., Muna M., Ng L., Nye J.A., Sampson-Johannes A., Fattaey A., McCormick F. (1996) An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274:373–376 Heise C., Sampson-Johannes A., Williams A., McCormick F., Von Hoff D.D., Kirn D.H. (1997) ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat. Med. 3:639–645 Vollmer C.M., Ribas A., Butterfield L.H., Dissette V.B., Andrews K.J., Eilber F.C., Montejo L.D., Chen A.Y., Hu B., Glaspy J.A., McBride W.H., Economou J.S. (1999) p53 selective and nonselective replication of an E1B-deleted adenovirus in hepatocellular carcinoma. Cancer Res. 59:4369–4374 Li Y., Yu D.C., Chen Y., Amin P., Zhang H., Nguyen N., Henderson D.R. (2001) A hepatocellular carcinoma-specific adenovirus variant, CV890, eliminates distant human liver tumors in combination with doxorubicin. Cancer Res. 61:6428–6436 Hallenbeck P.L., Chang Y.N., Hay C., Golightly D., Stewart D., Lin J., Phipps S., Chiang Y.L. (1999) A novel tumor-specific replication-restricted adenoviral vector for gene therapy of hepatocellular carcinoma. Hum. Gene Ther. 10:1721–1733 Adams P.D., Kaelin W.G. Jr. (1995) Transcriptional control by E2F. Semin. Cancer Biol. 6:99–108 Ito H., Kyo S., Kanaya T., Takakura M., Koshida K., Namiki M., Inoue M. (1998) Detection of human telomerase reverse transcriptase messenger RNA in voided urine samples as a useful diagnostic tool for bladder cancer. Clin. Cancer Res. 4:2807–2810 Jakubczak J.L., Ryan P., Gorziglia M., Clarke L., Hawkins L.K., Hay C., Huang Y., Kaloss M., Marinov A., Phipps S., Pinkstaff A., Shirley P., Skripchenko Y., Stewart D., Forry-Schaudies S., Hallenbeck P.L. (2003) An oncolytic adenovirus selective for retinoblastoma tumor suppressor protein pathway-defective tumors: dependence on E1A, the E2F-1 promoter, and viral replication for selectivity and efficacy. Cancer Res. 63:1490–1499 Huang T.G., Savontaus M.J., Shinozaki K., Sauter B.V., Woo S.L. (2003) Telomerase-dependent oncolytic adenovirus for cancer treatment. Gene Ther. 10:1241–1247 Pawlik T.M., Nakamura H., Yoon S.S., Mullen J.T., Chandrasekhar S., Chiocca E.A., Tanabe K.K. (2000) Oncolysis of diffuse hepatocellular carcinoma by intravascular administration of a replication-competent, genetically engineered herpesvirus. Cancer Res. 60:2790–2795 Stojdl D.F., Lichty B., Knowles S., Marius R., Atkins H., Sonenberg N., Bell J.C. (2000) Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat. Med. 6:821–825 Keskinen P., Nyqvist M., Sareneva T., Pirhonen J., Melen K., Julkunen I. (1999) Impaired antiviral response in human hepatoma cells. Virology 263:364–375 Shinozaki K., Ebert O., Woo S.L. (2005) Treatment of multi-focal colorectal carcinoma metastatic to the liver of immune-competent and syngeneic rats by hepatic artery infusion of oncolytic vesicular stomatitis virus. Int. J. Cancer 114:659–664 Shinozaki K., Ebert O., Woo S.L. (2005) Eradication of advanced hepatocellular carcinoma in rats via repeated hepatic arterial infusions of recombinant VSV. Hepatology 41:196–203 Habib N.A., Sarraf C.E., Mitry R.R., Havlik R., Nicholls J., Kelly M., Vernon C.C., Gueret-Wardle D., El-Masry R., Salama H., Ahmed R., Michail N., Edward E., Jensen S.L. (2001) E1B-deleted adenovirus (dl1520) gene therapy for patients with primary and secondary liver tumors. Hum. Gene Ther. 12:219–226 Reid T., Galanis E., Abbruzzese J., Sze D., Wein L.M., Andrews J., Randlev B., Heise C., Uprichard M., Hatfield M., Rome L., Rubin J., Kirn D. (2002) Hepatic arterial infusion of a replication-selective oncolytic adenovirus (dl1520): phase II viral, immunologic, and clinical endpoints. Cancer Res. 62:6070–6079 Ferreira C.G., Tolis C., Giaccone G. (1999) p53 and chemosensitivity. Ann. Oncol. 10:1011–1021 Hollstein M., Sidransky D., Vogelstein B., Harris C.C. (1991) p53 mutations in human cancers. Science 253:49–53 Mitry R.R., Sarraf C.E., Havlik R., Habib N.A. (2000) Detection of adenovirus and initiation of apoptosis in hepatocellular carcinoma cells after Ad-p53 treatment. Hepatology 31:885–889 Xu G.W., Sun Z.T., Forrester K., Wang X.W., Coursen J., Harris C.C. (1996) Tissue-specific growth suppression and chemosensitivity promotion in human hepatocellular carcinoma cells by retroviral-mediated transfer of the wild-type p53 gene. Hepatology 24:1264–1268 Choi J.Y., Park Y.M., Byun B.H., Kim B.S., Hong E.G., Shin D.Y., Seong Y.R., Im D.S. (1999) Adenovirus-mediated p53 tumor suppressor gene therapy against subcutaneous HuH7 hepatoma cell line nodule of nude mice. J. Korean Med. Sci. 14:271–276 Anderson S.C., Johnson D.E., Harris M.P., Engler H., Hancock W., Huang W.M., Wills K.N., Gregory R.J., Sutjipto S., Wen S.F., Lofgren S., Shepard H.M., Maneval D.C. (1998) p53 gene therapy in a rat model of hepatocellular carcinoma: intra-arterial delivery of a recombinant adenovirus. Clin. Cancer Res. 4:1649–1659 Bao J.J., Zhang W.W., Kuo M.T. (1996) Adenoviral delivery of recombinant DNA into transgenic mice bearing hepatocellular carcinomas. Hum. Gene Ther. 7:355–365 Friedman S.L., Shaulian E., Littlewood T., Resnitzky D., Oren M. (1997) Resistance to p53-mediated growth arrest and apoptosis in Hep 3B hepatoma cells. Oncogene 15:63–70 Sandig V., Brand K., Herwig S., Lukas J., Bartek J., Strauss M. (1997) Adenovirally transferred p16INK4/CDKN2 and p53 genes cooperate to induce apoptotic tumor cell death. Nat. Med. 3:313–319 Habib N.A., Mitry R.R., Sadri R. (1998) p53 and gene therapy for hepatocellular carcinoma. Adv. Exp. Med. Biol. 451:499–504 Ashkenazi A., Pai R.C., Fong S., Leung S., Lawrence D.A., Marsters S.A., Blackie C., Chang L., McMurtrey A.E., Hebert A., DeForge L., Koumenis I.L., Lewis D., Harris L., Bussiere J., Koeppen H., Shahrokh Z., Schwall R.H. (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J. Clin. Invest. 104:155–162 Walczak H., Miller R.E., Ariail K., Gliniak B., Griffith T.S., Kubin M., Chin W., Jones J., Woodward A., Le T., Smith C., Smolak P., Goodwin R.G., Rauch C.T., Schuh J.C., Lynch D.H. (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat. Med. 5:157–163 Yamashita Y., Shimada M., Tanaka S., Okamamoto M., Miyazaki J., Sugimachi K. (2002) Electroporation-mediated tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo2L gene therapy for hepatocellular carcinoma. Hum. Gene Ther. 13:275–286 Ma H., Liu Y., Liu S., Xu R., Zheng D. (2005) Oral adeno-associated virus-sTRAIL gene therapy suppresses human hepatocellular carcinoma growth in mice. Hepatology 42:1355–1363 Yamanaka T., Shiraki K., Sugimoto K., Ito T., Fujikawa K., Ito M., Takase K., Moriyama M., Nakano T., Suzuki A. (2000) Chemotherapeutic agents augment TRAIL-induced apoptosis in human hepatocellular carcinoma cell lines. Hepatology 32:482–490 Kim Y.S., Schwabe R.F., Qian T., Lemasters J.J., Brenner D.A. (2002) TRAIL-mediated apoptosis requires NF-kappaB inhibition and the mitochondrial permeability transition in human hepatoma cells. Hepatology 36:1498–1508 Fillat C., Carrio M., Cascante A., Sangro B. (2003) Suicide gene therapy mediated by the Herpes Simplex virus thymidine kinase gene/Ganciclovir system: fifteen years of application. Curr. Gene Ther. 3:13–26 Moolten F.L. (1994) Drug sensitivity (“suicide”) genes for selective cancer chemotherapy. Cancer Gene Ther. 1:279–287 Mesnil M., Yamasaki H. (2000) Bystander effect in herpes simplex virus-thymidine kinase/ganciclovir cancer gene therapy: role of gap-junctional intercellular communication. Cancer Res. 60:3989–3999 Bi W.L., Parysek L.M., Warnick R., Stambrook P.J. (1993) In vitro evidence that metabolic cooperation is responsible for the bystander effect observed with HSV tk retroviral gene therapy. Hum. Gene Ther. 4:725–731 Kianmanesh A.R., Perrin H., Panis Y., Fabre M., Nagy H.J., Houssin D., Klatzmann D. (1997) A “distant” bystander effect of suicide gene therapy: regression of nontransduced tumors together with a distant transduced tumor. Hum. Gene Ther. 8:1807–1814 Yamamoto S., Suzuki S., Hoshino A., Akimoto M., Shimada T. (1997) Herpes simplex virus thymidine kinase/ganciclovir-mediated killing of tumor cell induces tumor-specific cytotoxic T cells in mice. Cancer Gene Ther. 4:91–96 Kuriyama S., Masui K., Kikukawa M., Sakamoto T., Nakatani T., Nagao S., Yamazaki M., Yoshiji H., Tsujinoue H., Fukui H., Yoshimatsu T., Ikenaka K. (1999) Complete cure of established murine hepatocellular carcinoma is achievable by repeated injections of retroviruses carrying the herpes simplex virus thymidine kinase gene. Gene Ther. 6:525–533 Qian C., Idoate M., Bilbao R., Sangro B., Bruna O., Vazquez J., Prieto J. (1997) Gene transfer and therapy with adenoviral vector in rats with diethylnitrosamine-induced hepatocellular carcinoma. Hum. Gene Ther. 8:349–358 van der Eb M.M., Cramer S.J., Vergouwe Y., Schagen F.H., van Krieken J.H., van der Eb A.J., Borel Rinkes I.H., van de Velde C.J., Hoeben R.C. (1998) Severe hepatic dysfunction after adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene and ganciclovir administration. Gene Ther. 5:451–458 Herraiz M., Beraza N., Solano A., Sangro B., Montoya J., Qian C., Prieto J., Bustos M. (2003) Liver failure caused by herpes simplex virus thymidine kinase plus ganciclovir therapy is associated with mitochondrial dysfunction and mitochondrial DNA depletion. Hum. Gene Ther. 14:463–472 Gerolami R., Cardoso J., Lewin M., Bralet M.P., Sa Cunha A., Clement O., Brechot C., Tran P.L. (2000) Evaluation of HSV-tk gene therapy in a rat model of chemically induced hepatocellular carcinoma by intratumoral and intrahepatic artery routes. Cancer Res. 60:993–1001 Sung M.W., Yeh H.C., Thung S.N., Schwartz M.E., Mandeli J.P., Chen S.H., Woo S.L. (2001) Intratumoral adenovirus-mediated suicide gene transfer for hepatic metastases from colorectal adenocarcinoma: results of a phase I clinical trial. Mol. Ther. 4:182–191 Kuriyama S., Mitoro A., Yamazaki M., Tsujinoue H., Nakatani T., Akahane T., Toyokawa Y., Kojima H., Okamoto S., Fukui H. (1999) Comparison of gene therapy with the herpes simplex virus thymidine kinase gene and the bacterial cytosine deaminase gene for the treatment of hepatocellular carcinoma. Scand. J. Gastroenterol. 34:1033–1041 Kanai F., Lan K.H., Shiratori Y., Tanaka T., Ohashi M., Okudaira T., Yoshida Y., Wakimoto H., Hamada H., Nakabayashi H., Tamaoki T., Omata M. (1997) In vivo gene therapy for alpha-fetoprotein-producing hepatocellular carcinoma by adenovirus-mediated transfer of cytosine deaminase gene. Cancer Res. 57:461–465 Topf N., Worgall S., Hackett N.R., Crystal R.G. (1998) Regional ‚pro-drug’ gene therapy: intravenous administration of an adenoviral vector expressing the E. coli cytosine deaminase gene and systemic administration of 5-fluorocytosine suppresses growth of hepatic metastasis of colon carcinoma. Gene Ther. 5:507–513 Hughes B.W., King S.A., Allan P.W., Parker W.B., Sorscher E.J. (1998) Cell to cell contact is not required for bystander cell killing by Escherichia coli purine nucleoside phosphorylase. J. Biol. Chem. 273:2322–2328 Mohr L., Shankara S., Yoon S.K., Krohne T.U., Geissler M., Roberts B., Blum H.E., Wands J.R. (2000) Gene therapy of hepatocellular carcinoma in vitro and in vivo in nude mice by adenoviral transfer of the Escherichia coli purine nucleoside phosphorylase gene. Hepatology 31:606–614 Hanahan D., Folkman J. (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364 Kountouras J., Zavos C., Chatzopoulos D. (2005) Apoptotic and anti-angiogenic strategies in liver and gastrointestinal malignancies. J. Surg. Oncol. 90:249–259 Kang M.A., Kim K.Y., Seol J.Y., Kim K.C., Nam M.J. (2000) The growth inhibition of hepatoma by gene transfer of antisense vascular endothelial growth factor. J. Gene Med. 2:289–296 Schmitz V., Wang L., Barajas M., Gomar C., Prieto J., Qian C. (2004) Treatment of colorectal and hepatocellular carcinomas by adenoviral mediated gene transfer of endostatin and angiostatin-like molecule in mice. Gut 53:561–567 Xu R., Sun X., Tse L.Y., Li H., Chan P.C., Xu S., Xiao W., Kung H.F., Krissansen G.W., Fan S.T., (2003) Long-term expression of angiostatin suppresses metastatic liver cancer in mice. Hepatology 37:1451–1460 Folkman J., Shing Y. (1992) Angiogenesis. J. Biol. Chem. 267:10931–10934 Tombran-Tink J., Chader G.G., Johnson L.V. (1991) PEDF: a pigment epithelium-derived factor with potent neuronal differentiative activity. Exp. Eye Res. 53:411–414 Gao G., Li Y., Gee S., Dudley A., Fant J., Crosson C., Ma J.X. (2002) Down-regulation of vascular endothelial growth factor and up-regulation of pigment epithelium-derived factor: a possible mechanism for the anti-angiogenic activity of plasminogen kringle 5. J. Biol. Chem. 277:9492–9497 Cao W., Tombran-Tink J., Chen W., Mrazek D., Elias R., McGinnis J.F. (1999) Pigment epithelium-derived factor protects cultured retinal neurons against hydrogen peroxide-induced cell death. J. Neurosci. Res. 57:789–800 Houenou L.J., D’Costa A.P., Li L., Turgeon V.L., Enyadike C., Alberdi E., Becerra S.P. (1999) Pigment epithelium-derived factor promotes the survival and differentiation of developing spinal motor neurons. J. Comp. Neurol. 412:506–514 Palmieri D., Watson J.M., Rinehart C.A. (1999) Age-related expression of PEDF/EPC-1 in human endometrial stromal fibroblasts: implications for interactive senescence. Exp. Cell Res. 247:142–147 Dawson D.W., Volpert O.V., Gillis P., Crawford S.E., Xu H., Benedict W., Bouck N.P. (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285:245–248 Matsumoto K., Ishikawa H., Nishimura D., Hamasaki K., Nakao K., Eguchi K. (2004) Antiangiogenic property of pigment epithelium-derived factor in hepatocellular carcinoma. Hepatology 40:252–259 Wang L., Schmitz V., Perez-Mediavilla A., Izal I., Prieto J., Qian C. (2003) Suppression of angiogenesis and tumor growth by adenoviral-mediated gene transfer of pigment epithelium-derived factor. Mol. Ther. 8:72–79 Maemondo M., Narumi K., Saijo Y., Usui K., Tahara M., Tazawa R., Hagiwara K., Matsumoto K., Nakamura T., Nukiwa T. (2002) Targeting angiogenesis and HGF function using an adenoviral vector expressing the HGF antagonist NK4 for cancer therapy. Mol. Ther. 5:177–185 Hirao S., Yamada Y., Koyama F., Fujimoto H., Takahama Y., Ueno M., Kamada K., Mizuno T., Maemondo M., Nukiwa T., Matsumoto K., Nakamura T., Nakajima Y. (2002) Tumor suppression effect using NK4, a molecule acting as an antagonist of HGF, on human gastric carcinomas. Cancer Gene Ther. 9:700–707 Saimura M., Nagai E., Mizumoto K., Maehara N., Okino H., Katano M., Matsumoto K., Nakamura T., Narumi K., Nukiwa T., Tanaka M. (2002) Intraperitoneal injection of adenovirus-mediated NK4 gene suppresses peritoneal dissemination of pancreatic cancer cell line AsPC-1 in nude mice. Cancer Gene Ther. 9:799–806 Heideman D.A., van Beusechem V.W., Bloemena E., Snijders P.J., Craanen M.E., Offerhaus G.J., Derksen P.W., de Bruin M., Witlox M.A., Molenaar B., Meijer C.J., Gerritsen W.R. (2004) Suppression of tumor growth, invasion and angiogenesis of human gastric cancer by adenovirus-mediated expression of NK4. J. Gene Med. 6:317–327 Kuba K., Matsumoto K., Date K., Shimura H., Tanaka M., Nakamura T. (2000) HGF/NK4, a four-kringle antagonist of hepatocyte growth factor, is an angiogenesis inhibitor that suppresses tumor growth and metastasis in mice. Cancer Res. 60:6737–6743 Heideman D.A., Overmeer R.M., van Beusechem V.W., Lamers W.H., Hakvoort T.B., Snijders P.J., Craanen M.E., Offerhaus G.J., Meijer C.J., Gerritsen W.R. (2005) Inhibition of angiogenesis and HGF-cMET-elicited malignant processes in human hepatocellular carcinoma cells using adenoviral vector-mediated NK4 gene therapy. Cancer Gene Ther. 12:954–962 McCarthy M. (2003) Antiangiogenesis drug promising for metastatic colorectal cancer. Lancet 361:1959 Hurwitz H., Fehrenbacher L., Novotny W., Cartwright T., Hainsworth J., Heim W., Berlin J., Baron A., Griffing S., Holmgren E., Ferrara N., Fyfe G., Rogers B., Ross R., Kabbinavar F. (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350:2335–2342 Herbst R.S., Sandler A.B. (2004) Non-small cell lung cancer and antiangiogenic therapy: what can be expected of bevacizumab? Oncologist 9 Suppl 1:19–26 Kerbel R.S., Yu J., Tran J., Man S., Viloria-Petit A., Klement G., Coomber B.L., Rak J. (2001) Possible mechanisms of acquired resistance to anti-angiogenic drugs: implications for the use of combination therapy approaches. Cancer Metast. Rev. 20:79–86 Viloria-Petit A.M., Kerbel R.S. (2004) Acquired resistance to EGFR inhibitors: mechanisms and prevention strategies. Int. J. Radiat. Oncol. Biol. Phys. 58:914–926 Graepler F., Verbeek B., Graeter T., Smirnow I., Kong H.L., Schuppan D., Bauer M., Vonthein R., Gregor M., Lauer U.M. (2005) Combined endostatin/sFlt-1 antiangiogenic gene therapy is highly effective in a rat model of HCC. Hepatology 41:879–886 Sontheimer E.J., Carthew R.W. (2005) Silence from within: endogenous siRNAs and miRNAs. Cell 122:9–12 Zamore P.D., Haley B. (2005) Ribo-gnome: the big world of small RNAs. Science 309:1519–1524 Filipowicz W. (2005) RNAi: the nuts and bolts of the RISC machine. Cell 122:17–20 Tang G. (2005) siRNA and miRNA: an insight into RISCs. Trends Biochem. Sci. 30:106–114 Lu P.Y., Xie F., Woodle M.C. (2005) In vivo application of RNA interference: from functional genomics to therapeutics. Adv. Genet. 54:117–142 Gao L., Zhang L., Hu J., Li F., Shao Y., Zhao D., Kalvakolanu D.V., Kopecko D.J., Zhao X., Xu D.Q. (2005) Down-regulation of signal transducer and activator of transcription 3 expression using vector-based small interfering RNAs suppresses growth of human prostate tumor in vivo. Clin. Cancer Res. 11:6333–6341 Zhang X., Chen Z.G., Choe M.S., Lin Y., Sun S.Y., Wieand H.S., Shin H.J., Chen A., Khuri F.R., Shin D.M. (2005) Tumor growth inhibition by simultaneously blocking epidermal growth factor receptor and cyclooxygenase-2 in a xenograft model. Clin. Cancer Res. 11:6261–6269 Saydam O., Glauser D.L., Heid I., Turkeri G., Hilbe M., Jacobs A.H., Ackermann M., Fraefel C. (2005) Herpes simplex virus 1 amplicon vector-mediated siRNA targeting epidermal growth factor receptor inhibits growth of human glioma cells in vivo. Mol. Ther. 12:803–812 Chen Z., Varney M.L., Backora M.W., Cowan K., Solheim J.C., Talmadge J.E., Singh R.K. (2005) Down-regulation of vascular endothelial cell growth factor-C expression using small interfering RNA vectors in mammary tumors inhibits tumor lymphangiogenesis and spontaneous metastasis and enhances survival. Cancer Res. 65:9004–9011 Landen C.N., Kinch M.S., Sood A.K. (2005) EphA2 as a target for ovarian cancer therapy. Expert Opin. Ther. Targets 9:1179–1187 Duxbury M.S., Ito H., Benoit E., Zinner M.J., Ashley S.W., Whang E.E. (2004) Retrovirally mediated RNA interference targeting the M2 subunit of ribonucleotide reductase: a novel therapeutic strategy in pancreatic cancer. Surgery 136:261–269 Fu X.Y., Wang H.Y., Tan L., Liu S.Q., Cao H.F., Wu M.C. (2002) Overexpression of p28/gankyrin in human hepatocellular carcinoma and its clinical significance. World J. Gastroenterol.8:638–643 Hori T., Kato S., Saeki M., DeMartino G.N., Slaughter C.A., Takeuchi J., Toh-e A., Tanaka K. (1998) cDNA cloning and functional analysis of p28 (Nas6p) and p40.5 (Nas7p), two novel regulatory subunits of the 26S proteasome. Gene 216:113–122 Li J., Tsai M.D. (2002) Novel insights into the INK4-CDK4/6-Rb pathway: counter action of gankyrin against INK4 proteins regulates the CDK4-mediated phosphorylation of Rb. Biochemistry (Mosc). 41:3977–3983 Li H., Fu X., Chen Y., Hong Y., Tan Y., Cao H., Wu M., Wang H. (2005) Use of adenovirus-delivered siRNA to target oncoprotein p28GANK in hepatocellular carcinoma. Gastroenterology 128:2029–2041 Wirth T., Kuhnel F., Fleischmann-Mundt B., Woller N., Djojosubroto M., Rudolph K.L., Manns M., Zender L., Kubicka S. (2005) Telomerase-dependent virotherapy overcomes resistance of hepatocellular carcinomas against chemotherapy and tumor necrosis factor-related apoptosis-inducing ligand by elimination of Mcl-1. Cancer Res. 65:7393–7402 Kuntzen C., Sonuc N., De Toni E.N., Opelz C., Mucha S.R., Gerbes A.L., Eichhorst S.T. (2005) Inhibition of c-Jun-N-terminal-kinase sensitizes tumor cells to CD95-induced apoptosis and induces G2/M cell cycle arrest. Cancer Res. 65:6780–6788 Zhou L., Hayashi Y., Itoh T., Wang W., Rui J., Itoh H. (2000) Expression of urokinase-type plasminogen activator, urokinase-type plasminogen activator receptor, and plasminogen activator inhibitor-1 and -2 in hepatocellular carcinoma. Pathol. Int. 50:392–397 Muehlenweg B., Sperl S., Magdolen V., Schmitt M., Harbeck N. (2001) Interference with the urokinase plasminogen activator system: a promising therapy concept for solid tumours. Expert Opin. Biol. Ther. 1:683–691 Salvi A., Arici B., De Petro G., Barlati S. (2004) Small interfering RNA urokinase silencing inhibits invasion and migration of human hepatocellular carcinoma cells. Mol. Cancer Ther. 3:671–678 Nishi T., Forgac M. (2002) The vacuolar (H+)-ATPases – nature’s most versatile proton pumps. Nat. Rev. Mol. Cell Biol. 3:94–103 Lu X., Qin W., Li J., Tan N., Pan D., Zhang H., Xie L., Yao G., Shu H., Yao M., Wan D., Gu J., Yang S. (2005) The growth and metastasis of human hepatocellular carcinoma xenografts are inhibited by small interfering RNA targeting to the subunit ATP6L of proton pump. Cancer Res. 65:6843–6849 Donnelly J.J., Wahren B., Liu M.A. (2005) DNA vaccines: progress and challenges. J. Immunol. 175:633–639 Banchereau J., Palucka A.K. (2005) Dendritic cells as therapeutic vaccines against cancer. Nat. Rev. Immunol. 5:296–306 Mach N., Dranoff G. (2000) Cytokine-secreting tumor cell vaccines. Curr. Opin. Immunol. 12:571–575 Grimm C.F., Ortmann D., Mohr L., Michalak S., Krohne T.U., Meckel S., Eisele S., Encke J., Blum H.E., Geissler M. (2000) Mouse alpha-fetoprotein-specific DNA-based immunotherapy of hepatocellular carcinoma leads to tumor regression in mice. Gastroenterology 119:1104–1112 Meng W.S., Butterfield L.H., Ribas A., Dissette V.B., Heller J.B., Miranda G.A., Glaspy J.A., McBride W.H., Economou J.S. (2001) alpha-Fetoprotein-specific tumor immunity induced by plasmid prime-adenovirus boost genetic vaccination. Cancer Res. 61:8782–8786 Hauser H., Shen L., Gu Q.L., Krueger S., Chen S.Y. (2004) Secretory heat-shock protein as a dendritic cell-targeting molecule: a new strategy to enhance the potency of genetic vaccines. Gene Ther. 11:924–932 Kim T.W., Hung C.F., Kim J.W., Juang J., Chen P.J., He L., Boyd D.A., Wu T.C. (2004) Vaccination with a DNA vaccine encoding herpes simplex virus type 1 VP22 linked to antigen generates long-term antigen-specific CD8-positive memory T cells and protective immunity. Hum. Gene Ther. 15:167–177 Cheng W.F., Hung C.F., Chai C.Y., Hsu K.F., He L., Ling M., Wu T.C. (2001) Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J. Clin. Invest. 108:669–678 Vollmer C.M., Jr., Eilber F.C., Butterfield L.H., Ribas A., Dissette V.B., Koh A., Montejo L.D., Lee M.C., Andrews K.J., McBride W.H., Glaspy J.A., Economou J.S. (1999) Alpha-fetoprotein-specific genetic immunotherapy for hepatocellular carcinoma. Cancer Res. 59:3064–3067 Lee W.C., Wang H.C., Jeng L.B., Chiang Y.J., Lia C.R., Huang P.F., Chen M.F., Qian S., Lu L. (2001) Effective treatment of small murine hepatocellular carcinoma by dendritic cells. Hepatology 34:896–905 Tatsumi T., Takehara T., Kanto T., Miyagi T., Kuzushita N., Sugimoto Y., Jinushi M., Kasahara A., Sasaki Y., Hori M., Hayashi N. (2001) Administration of interleukin-12 enhances the therapeutic efficacy of dendritic cell-based tumor vaccines in mouse hepatocellular carcinoma. Cancer Res. 61:7563–7567 Ribas A., Butterfield L.H., Glaspy J.A., Economou J.S. (2002) Cancer immunotherapy using gene-modified dendritic cells. Curr. Gene Ther. 2:57–78 Grewal I.S., Flavell R.A. (1998) CD40 and CD154 in cell-mediated immunity. Annu. Rev. Immunol. 16:111–135 Schmitz V., Barajas M., Wang L., Peng D., Duarte M., Prieto J., Qian C. (2001) Adenovirus-mediated CD40 ligand gene therapy in a rat model of orthotopic hepatocellular carcinoma. Hepatology 34:72–81 Lyman S.D., James L., Vanden Bos T., de Vries P., Brasel K., Gliniak B., Hollingsworth L.T., Picha K.S., McKenna H.J., Splett R.R., et al. (1993) Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell 75:1157–1167 Shaw S.G., Maung A.A., Steptoe R.J., Thomson A.W., Vujanovic N.L. (1998) Expansion of functional NK cells in multiple tissue compartments of mice treated with Flt3-ligand: implications for anti-cancer and anti-viral therapy. J. Immunol. 161:2817–2824 Barajas M., Mazzolini G., Genove G., Bilbao R., Narvaiza I., Schmitz V., Sangro B., Melero I., Qian C., Prieto J. (2001) Gene therapy of orthotopic hepatocellular carcinoma in rats using adenovirus coding for interleukin 12. Hepatology 33:52–61 Pham-Nguyen K.B., Yang W., Saxena R., Thung S.N., Woo S.L., Chen S.H. (1999) Role of NK and T cells in IL-12-induced anti-tumor response against hepatic colon carcinoma. Int. J. Cancer 81:813–819 Putzer B.M., Stiewe T., Rodicker F., Schildgen O., Ruhm S., Dirsch O., Fiedler M., Damen U., Tennant B., Scherer C., Graham F.L., Roggendorf M. (2001) Large nontransplanted hepatocellular carcinoma in woodchucks: treatment with adenovirus-mediated delivery of interleukin 12/B7.1 genes. J. Natl. Cancer Inst. 93:472–479 Tatsumi T., Takehara T., Kanto T., Kuzushita N., Ito A., Kasahara A., Sasaki Y., Hori M., Hayashi N. (1999) B7-1 (CD80)-gene transfer combined with interleukin-12 administration elicits protective and therapeutic immunity against mouse hepatocellular carcinoma. Hepatology 30:422–429 Tai K.F., Chen P.J., Chen D.S., Hwang L.H. (2003) Concurrent delivery of GM-CSF and endostatin genes by a single adenoviral vector provides a synergistic effect on the treatment of orthotopic liver tumors. J. Gene Med. 5:386–398 Drozdzik M., Qian C., Xie X., Peng D., Bilbao R., Mazzolini G., Prieto J. (2000) Combined gene therapy with suicide gene and interleukin-12 is more efficient than therapy with one gene alone in a murine model of hepatocellular carcinoma. J. Hepatol. 32:279–286 Tai K.F., Chen D.S., Hwang L.H. (2004) Curative potential of GM-CSF-secreting tumor cell vaccines on established orthotopic liver tumors: mechanisms for the superior antitumor activity of live tumor cell vaccines. J. Biomed. Sci. 11:228–238 Chang C.J., Tai K.F., Roffler S., Hwang L.H. (2004) The immunization site of cytokine-secreting tumor cell vaccines influences the trafficking of tumor-specific T lymphocytes and antitumor efficacy against regional tumors. J. Immunol. 173:6025–6032