Mô hình động lực theo giới tính trong hồ sơ động lực của học sinh liên quan đến iSTEM và điểm kiểm tra STEM: phân tích cụm

Seppe Hermans1, Marijn Gijsen1, Tine Mombaers1, Peter Van Petegem1
1Department of Training and Educational Science, University of Antwerp, Sint-Jacobstraat 2, 2000, Antwerp, Belgium

Tóm tắt

Tóm tắt Đặt vấn đề

Việc thúc đẩy và cải thiện giáo dục STEM đang được thúc đẩy bởi mối quan tâm kinh tế khi các nền kinh tế hiện đại có nhu cầu ngày càng cao về các nhà nghiên cứu, kỹ thuật viên và các chuyên gia STEM có trình độ. Hơn nữa, phụ nữ vẫn chưa được đại diện đầy đủ trong các lĩnh vực liên quan đến STEM, điều này có hậu quả kinh tế và xã hội đáng kể. Có nhiều nghiên cứu cho thấy các con đường giới tính gia nhập và rời bỏ STEM chịu sự chi phối của động lực, nhưng vẫn thiếu kiến thức về các mô hình theo giới tính trong hồ sơ động lực của học sinh trung học, đặc biệt là trong các lĩnh vực liên ngành như STEM tích hợp (iSTEM). Nghiên cứu này giải quyết các khoảng trống này bằng cách xem xét mối liên kết giữa các mô hình trong hồ sơ động lực hướng tới STEM tích hợp (iSTEM), giới tính và điểm kiểm tra STEM.

Kết quả

Sử dụng phân tích cụm trên mẫu N = 755 học sinh lớp tám, chúng tôi đã xác lập bốn hồ sơ động lực khác nhau. Tiếp đó, một hồi quy logistic đa thức được thực hiện để tính toán xác suất dự đoán cho việc tham gia cụm dựa trên giới tính và điểm kiểm tra. Phân phối của các cụm cho thấy có sự khác biệt đáng kể dựa trên giới tính và điểm kiểm tra. Mặc dù phân tích của chúng tôi không cho thấy sự khác biệt về điểm kiểm tra trung bình, nhưng sự khác biệt về giới tính đáng kể có thể được tìm thấy trong và giữa các hồ sơ động lực. Ví dụ, các cô gái có khả năng cao hơn thuộc về một cụm hồ sơ kém thuận lợi hơn so với các cậu trai. Trong cụm đó, các cô gái có điểm kiểm tra trung bình cao hơn đáng kể so với các cậu trai, cho thấy tác động khác nhau của các hồ sơ động lực.

Kết luận

Khái niệm về sự đồng biểu hiện động lực nhấn mạnh sự cần thiết cho các giảng viên vượt qua những nhãn dán đơn giản về động lực cao hoặc thấp, mà tiến tới sự đánh giá nhận thức rõ cách mà học sinh áp dụng một tương tác phức tạp của các loại động lực. Hơn nữa, các phân tích giới tính đặt ra câu hỏi về cách mà chúng ta có thể tiến tới những phương pháp công bằng hơn.

Từ khóa


Tài liệu tham khảo

Ainley, M., Hidi, S., & Berndorff, D. (2002). Interest, learning, and the psychological processes that mediate their relationship. Journal of Educational Psychology, 94(3), 545–561. https://doi.org/10.1037/0022-0663.94.3.545

Antonenko, P. D., Toy, S., & Niederhauser, D. S. (2012). Using cluster analysis for data mining in educational technology research. Educational Technology Research and Development, 60(3), 383–398. https://doi.org/10.1007/s11423-012-9235-8

Bandura, A. (1986). The explanatory and predictive scope of self-efficacy theory. Journal of Social and Clinical Psychology, 4(3), 359–373. https://doi.org/10.1521/jscp.1986.4.3.359

Bandura, A. (1997). Self-efficacy: The exercise of control. W H Freeman/Times Books/ Henry Holt & Co.

Banfield, J. D., & Raftery, A. E. (1993). Model-based Gaussian and non-Gaussian clustering. Biometrics, 803–821.

Bartholomew, D. J., Steele, F., & Moustaki, I. (2008). Analysis of multivariate social science data. CRC Press.

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting Linear Mixed-Effects Models Using lme4. ArXiv e-prints, arXiv:1406. https://doi.org/10.18637/jss.v067.i01

Bråten, I., & Olaussen, B. S. (2005). Profiling individual differences in student motivation: A longitudinal cluster-analytic study in different academic contexts. Contemporary Educational Psychology, 30(3), 359–396. https://doi.org/10.1016/j.cedpsych.2005.01.003

Britner, S. L., & Pajares, F. (2006). Sources of science self-efficacy beliefs of middle school students. Journal of Research in Science Teaching, 43(5), 485–499.

Card, D., & Payne, A. A. (2021). High school choices and the gender gap in STEM. Economic Inquiry, 59(1), 9–28. https://doi.org/10.1111/ecin.12934

Chavatzia, T. (2017). Cracking the code: Girls’ and women’s education in science, technology, engineering and mathematics (STEM). Unesco Paris.

Concannon, J. P., & Barrow, L. H. (2009). A cross-sectional study of engineering students’ self-efficacy by gender, ethnicity, year, and transfer status. Journal of Science Education and Technology, 18(2), 163–172.

Csizér, K., & Dörnyei, Z. (2005). Language learners’ motivational profiles and their motivated learning behavior. Language Learning, 55(4), 613–659. https://doi.org/10.1111/j.0023-8333.2005.00319.x

De Loof, H. (2019). Educating engaged and competent students for STEM: effects of integrated STEM education. University of Antwerp.

De Meester, J., Boeve-De Pauw, J., Buyse, M.-P., Ceuppens, S., De Cock, M., De Loof, H., Goovaerts, L., Hellinckx, L., Knipprath, H., Struyf, A., Thibaut, L., Van De Velde, D., Van Petegem, P., & Dehaene, W. (2020). Bridging the gap between secondary and higher STEM Education—the Case of STEM@school. European Review, 28(S1), S135–S157. https://doi.org/10.1017/s1062798720000964

Dewitt, J., & Archer, L. (2015). Who Aspires to a Science Career? A comparison of survey responses from primary and secondary school students. International Journal of Science Education, 37(13), 2170–2192. https://doi.org/10.1080/09500693.2015.1071899

Dietrich, J., & Lazarides, R. (2019). Gendered development of motivational belief patterns in mathematics across a school year and career plans in math-related fields [Brief Research Report]. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2019.01472

Eccles, J. (2011). Gendered educational and occupational choices: Applying the Eccles et al. model of achievement-related choices. International Journal of Behavioral Development, 35(3), 195–201.

Eccles, J. S., & Wang, M.-T. (2016). What motivates females and males to pursue careers in mathematics and science? International Journal of Behavioral Development, 40(2), 100–106. https://doi.org/10.1177/0165025415616201

Eccles, J. S., & Wigfield, A. (2002). Motivational Beliefs, Values, and Goals. Annual Review of Psychology, 53(1), 109–132. https://doi.org/10.1146/annurev.psych.53.100901.135153

Ertl, B., Luttenberger, S., & Paechter, M. (2017). The impact of gender stereotypes on the self-concept of female students in STEM subjects with an under-representation of females. Frontiers in Psychology, 8, 703.

Fernández Polcuch, E., Brooks, L. A., Bello, A., & Deslandes, K. (2018). Measuring gender equality in science and engineering: the SAGA survey of drivers and barriers to careers in science and engineering. UNESCO Publishing.

Hakan, K., & Münire, E. (2014). Academic motivation: Gender, domain and grade differences. Procedia Social and Behavioral Sciences. https://doi.org/10.1016/j.sbspro.2014.07.469

Harter, S. (1992). The relationship between perceived competence, affect, and motivational orientation within the classroom: Processes and patterns of change. In Achievement and motivation: A social-developmental perspective. (pp. 77–114). Cambridge University Press.

Hattie, J., Hodis, F. A., & Kang, S. H. (2020). Theories of motivation: Integration and ways forward. Contemporary Educational Psychology, 61, 101865.

Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111–127. https://doi.org/10.1207/s15326985ep4102_4

Howard, J. L., Bureau, J., Guay, F., Chong, J. X. Y., & Ryan, R. M. (2021). Student motivation and associated outcomes: A meta-analysis from self-determination theory. Perspectives on Psychological Science, 16(6), 1300–1323. https://doi.org/10.1177/1745691620966789

Ing, M. (2014). Gender differences in the influence of early perceived parental support on student mathematics and science achievement and stem career attainment. International Journal of Science and Mathematics Education, 12(5), 1221–1239. https://doi.org/10.1007/s10763-013-9447-3

Jiang, T., Chen, Z., & Sedikides, C. (2020). Self-concept clarity lays the foundation for self-continuity: The restorative function of autobiographical memory. Journal of Personality and Social Psychology, 119(4), 945–959. https://doi.org/10.1037/pspp0000259

Kalender, Z. Y., Marshman, E., Schunn, C. D., Nokes-Malach, T. J., & Singh, C. (2019). Gendered patterns in the construction of physics identity from motivational factors. Physical Review Physics Education Research. https://doi.org/10.1103/physrevphyseducres.15.020119

Keith, K. (2018). Case study: Exploring the implementation of an integrated STEM curriculum program in elementary first grade classes Concordia University (Oregon)].

Knipprath, H., Thibaut, L., Buyse, M. P., Ceuppens, S., Loof, H. D., Meester, J. D., Goovaerts, L., Struyf, A., Pauw, J. B. D., Depaepe, F., Deprez, J., Cock, M. D., Hellinckx, L., Langie, G., Struyven, K., de Velde, D. V., Petegem, P. V., & Dehaene, W. (2018). STEM education in Flanders: How STEM@school Aims to Foster STEM literacy and a positive attitude towards STEM. IEEE Instrumentation & Measurement Magazine, 21(3), 36–40. https://doi.org/10.1109/MIM.2018.8360917

Koenka, A. C. (2020). Academic motivation theories revisited: An interactive dialog between motivation scholars on recent contributions, underexplored issues, and future directions. Contemporary Educational Psychology, 61, 101831. https://doi.org/10.1016/j.cedpsych.2019.101831

Kong, L. C., & Liu, W. C. (2020). Understanding motivational profiles of high-ability female students from a Singapore secondary school: A self-determination approach. The Asia-Pacific Education Researcher, 29(6), 529–539. https://doi.org/10.1007/s40299-020-00504-2

Koul, R. B., Fraser, B. J., Maynard, N., & Tade, M. (2018). Evaluation of engineering and technology activities in primary schools in terms of learning environment, attitudes and understanding. Learning Environments Research, 21(2), 285–300. https://doi.org/10.1007/s10984-017-9255-8

Leaper, C., Farkas, T., & Brown, C. S. (2012). Adolescent girls’ experiences and gender-related beliefs in relation to their motivation in math/science and English. Journal of Youth and Adolescence, 41(3), 268–282. https://doi.org/10.1007/s10964-011-9693-z

Lent, R. W., Brown, S. D., & Hackett, G. (1994). Toward a unifying social cognitive theory of career and academic interest, choice, and performance. Journal of Vocational Behavior, 45(1), 79–122.

Lent, R. W., & Brown, S. D. (2006). On conceptualizing and assessing social cognitive constructs in career research: A measurement guide. Journal of Career Assessment, 14(1), 12–35. https://doi.org/10.1177/1069072705281364

Liu, W. C., Wang, C. K. J., Tan, O. S., Koh, C., & Ee, J. (2009). A self-determination approach to understanding students’ motivation in project work. Learning and Individual Differences, 19(1), 139–145. https://doi.org/10.1016/j.lindif.2008.07.002

Marshman, E. M., Kalender, Z. Y., Nokes-Malach, T., Schunn, C., & Singh, C. (2018). Female students with A’s have similar physics self-efficacy as male students with C’s in introductory courses: A cause for alarm? Physical Review Physics Education Research, 14(2), 020123. https://doi.org/10.1103/PhysRevPhysEducRes.14.020123

Meila, M., & Heckerman, D. (2013). An experimental comparison of several clustering and initialization methods. arXiv preprint arXiv:1301.7401.

Michaelides, M. P., Brown, G. T. L., Eklöf, H., & Papanastasiou, E. C. (2019). Methodology: Cluster analysis of motivation variables in the TIMSS data. In M. P. Michaelides, G. T. L. Brown, H. Eklöf, & E. C. Papanastasiou (Eds.), Motivational profiles in TIMSS mathematics: Exploring student clusters across countries and time (pp. 25–40). Springer International Publishing. https://doi.org/10.1007/978-3-030-26183-2_3

Morais Maceira, H. (2017). Economic benefits of gender equality in the EU. Intereconomics, 52(3), 178–183. https://doi.org/10.1007/s10272-017-0669-4

Nadelson, L. S., & Seifert, A. L. (2017). Integrated STEM defined: Contexts, challenges, and the future. The Journal of Educational Research, 110(3), 221–223. https://doi.org/10.1080/00220671.2017.1289775

Ng, B. L. L., Liu, W. C., & Wang, J. C. K. (2016). Student motivation and learning in mathematics and science: A cluster analysis. International Journal of Science and Mathematics Education, 14(7), 1359–1376. https://doi.org/10.1007/s10763-015-9654-1

Nissen, J. M., & Shemwell, J. T. (2016). Gender, experience, and self-efficacy in introductory physics. Physical Review Physics Education Research. https://doi.org/10.1103/physrevphyseducres.12.020105

OECD. (2008). Encouraging Student Interest in Science and Technology Studies. https://doi.org/10.1787/9789264040892-en

Ratelle, C. F., Guay, F., Vallerand, R. J., Larose, S., & Senécal, C. (2007). Autonomous, controlled, and amotivated types of academic motivation: A person-oriented analysis. Journal of Educational Psychology, 99(4), 734.

Rizopoulos, D. (2006). ltm: An R package for latent variable modeling and item response theory analyses. JSS Journal of Statistical Software November. https://doi.org/10.18637/jss.v017.i05

Roehrig, G. H., Dare, E. A., Ring-Whalen, E., & Wieselmann, J. R. (2021). Understanding coherence and integration in integrated STEM curriculum. International Journal of STEM Education. https://doi.org/10.1186/s40594-020-00259-8

Ryan, R. M., & Connell, J. P. (1989). Perceived locus of causality and internalization: Examining reasons for acting in two domains. Journal of Personality and Social Psychology, 57(5), 749–761. https://doi.org/10.1037/0022-3514.57.5.749

Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54–67.

Ryan, R. M., & Deci, E. L. (2020). Intrinsic and extrinsic motivation from a self-determination theory perspective: Definitions, theory, practices, and future directions. Contemporary Educational Psychology. https://doi.org/10.1016/j.cedpsych.2020.101860

Sarstedt, M., & Mooi, E. (2014). A concise guide to market research. The Process, Data, and, 12.

Sawtelle, V., Brewe, E., & Kramer, L. H. (2012). Exploring the relationship between self-efficacy and retention in introductory physics. Journal of Research in Science Teaching, 49(9), 1096–1121. https://doi.org/10.1002/tea.21050

Schwab, J. A. (2002). Multinomial logistic regression: Basic relationships and complete problems. In.

Starkweather, J. (2011). Multinomial Logistic Regression http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/Benchmarks/MLR_JDS_Aug2011.pdf

Stolk, J. D., Gross, M. D., & Zastavker, Y. V. (2021). Motivation, pedagogy, and gender: Examining the multifaceted and dynamic situational responses of women and men in college STEM courses. International Journal of STEM Education, 8(1), 35. https://doi.org/10.1186/s40594-021-00283-2

Thibaut, L., Ceuppens, S., De Loof, H., De Meester, J., Goovaerts, L., Struyf, A., Boeve-de Pauw, J., Dehaene, W., Deprez, J., & De Cock, M. (2018). Integrated STEM education: A systematic review of instructional practices in secondary education. European Journal of STEM Education, 3(1), 2.

Tinsley, H. E. A., & Brown, S. D. (2000). Handbook of applied multivariate statistics and mathematical modeling. Academic Press.

Tzu-Ling, H. (2019). Gender differences in high-school learning experiences, motivation, self-efficacy, and career aspirations among Taiwanese STEM college students. International Journal of Science Education, 41(13), 1870–1884. https://doi.org/10.1080/09500693.2019.1645963

Vallerand, R. J., Pelletier, L. G., Blais, M. R., Brière, N. M., Senecal, C., & Vallieres, E. F. (1992). The Academic Motivation Scale: A measure of intrinsic, extrinsic, and amotivation in education. Educational and Psychological Measurement, 52(4), 1003–1017. https://doi.org/10.1177/0013164492052004025

Vansteenkiste, M., Sierens, E., Soenens, B., Luyckx, K., & Lens, W. (2009). Motivational profiles from a self-determination perspective: The quality of motivation matters. Journal of Educational Psychology, 101(3), 671–688. https://doi.org/10.1037/a0015083

Vecchione, M., Alessandri, G., & Marsicano, G. (2014). Academic motivation predicts educational attainment: Does gender make a difference? Learning and Individual Differences, 32, 124–131. https://doi.org/10.1016/j.lindif.2014.01.003

Venables, W., & Ripley, B. (2002). Modern applied statistics with S (4th ed.). Springer.

Verhaegen, A., Op de beeck, C., Derks, A., Smits, W., Goeman, H., Cornelis, P., Bossaert, G., Caroline;, D., Bollen, M., & Thomas, W. (2020). STEM-monitor 2020. https://www.vlaanderen.be/publicaties/stem-monitor

Wang, J., & Biddle, S. (2001). Young People’s motivational profiles in physical activity: A cluster analysis. Journal of Sport and Exercise Psychology, 23, 1–22. https://doi.org/10.1123/jsep.23.1.1

Wang, M.-T., & Degol, J. L. (2017). Gender gap in science, technology, engineering, and mathematics (STEM): Current knowledge, implications for practice, policy, and future directions. Educational Psychology Review, 29(1), 119–140. https://doi.org/10.1007/s10648-015-9355-x

Wittgenstein, L. (2010). Philosophical investigations. John Wiley & Sons.

Yerdelen-Damar, S., & Peşman, H. (2013). Relations of gender and socioeconomic status to physics through metacognition and self-efficacy. The Journal of Educational Research, 106(4), 280–289. https://doi.org/10.1080/00220671.2012.692729

Zhang, T., Ramakrishnan, R., & Livny, M. (1996). BIRCH: An efficient data clustering method for very large databases. ACM Sigmod Record, 25(2), 103–114.