Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton

Journal of Chemical Physics - Tập 110 Số 16 - Trang 7667-7676 - 1999
Angela K. Wilson1, David E. Woon1, Kirk A. Peterson1, Thom H. Dunning1
1Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, 99352

Tóm tắt

Valence correlation consistent and augmented correlation consistent basis sets have been determined for the third row, main group atoms gallium through krypton. The methodology, originally developed for the first row atoms, was first applied to the selenium atom, resulting in the expected natural groupings of correlation functions (although higher angular momentum functions tend to be relatively more important for the third row atoms as they were for the second row atoms). After testing the generality of the conclusions for the gallium atom, the procedure was used to generate correlation consistent basis sets for all of the atoms gallium through krypton. The correlation consistent basis sets for the third row main group atoms are as follows: cc-pVDZ: (14s11p6d)/[5s4p2d]; cc-pVTZ: (20s13p9d1f )/[6s5p3d1f]; cc-pVQZ: (21s16p12d2 f1g)/[7s6p4d2 f1g]; cc-pV5Z: (26s17p13d3f2g1h)/[8s7p5d3f2g1h]. Augmented sets were obtained by adding diffuse functions to the above sets (one for each angular momentum present in the set), with the exponents of the additional functions optimized in calculations on the atomic anions. Test calculations on the atoms as well as selected molecules with the new basis sets show good convergence to an apparent complete basis set limit.

Từ khóa


Tài liệu tham khảo

1980, Chem. Phys., 48, 157, 10.1016/0301-0104(80)80045-0

1980, Int. J. Quantum Chem., S14, 175

1934, Phys. Rev., 46, 618, 10.1103/PhysRev.46.618

1955, Phys. Rev., 97, 1353, 10.1103/PhysRev.97.1353

1955, Phys. Rev., 100, 36, 10.1103/PhysRev.100.36

1957, Proc. R. Soc. London, Ser. A, 239, 267, 10.1098/rspa.1957.0037

1969, Adv. Chem. Phys., 14, 129

1976, Int. J. Quantum Chem., Symp., 10, 1, 10.1002/qua.560100102

1978, Int. J. Quantum Chem., 14, 91, 10.1002/qua.560140109

1980, J. Chem. Phys., 72, 4244, 10.1063/1.439657

1980, Chem. Phys. Lett., 75, 66, 10.1016/0009-2614(80)80465-9

1977, Chem. Phys. Lett., 50, 190, 10.1016/0009-2614(77)80161-9

1978, J. Chem. Phys., 68, 2114, 10.1063/1.436023

1983, Chem. Phys. Lett., 98, 66, 10.1016/0009-2614(83)80204-8

1986, Adv. Quantum Chem., 18, 281, 10.1016/S0065-3276(08)60051-9

1958, Nucl. Phys., 7, 421, 10.1016/0029-5582(58)90280-3

1960, Nucl. Phys., 17, 477, 10.1016/0029-5582(60)90140-1

1969, Nucl. Phys., 22, 177

1966, J. Chem. Phys., 45, 4256, 10.1063/1.1727484

1964, Adv. Chem. Phys., 14, 35

1982, J. Chem. Phys., 76, 1910, 10.1063/1.443164

1987, J. Chem. Phys., 86, 7041, 10.1063/1.452353

1988, J. Chem. Phys., 89, 3401, 10.1063/1.455742

1988, J. Chem. Phys., 88, 5974, 10.1063/1.454511

1990, J. Chem. Phys., 93, 6104, 10.1063/1.459002

1992, J. Chem. Phys., 97, 4282, 10.1063/1.463930

1989, Chem. Phys. Lett., 157, 479, 10.1016/S0009-2614(89)87395-6

1997, Chem. Phys. Lett., 281, 130, 10.1016/S0009-2614(97)01144-5

1989, J. Chem. Phys., 90, 1007, 10.1063/1.456153

1997, Chem. Phys. Lett., 273, 345, 10.1016/S0009-2614(97)00613-1

1992, J. Chem. Phys., 96, 6104

1996, Chem. Phys. Lett., 259, 669, 10.1016/0009-2614(96)00898-6

1997, J. Mol. Struct.: THEOCHEM, 398, 135

1997, Theor. Chem. Acc., 97, 227, 10.1007/s002140050256

1997, J. Chem. Phys., 106, 8718, 10.1063/1.473932

1998, Chem. Phys. Lett., 286, 243, 10.1016/S0009-2614(98)00111-0

1995, J. Phys. Chem., 99, 3898, 10.1021/j100012a005

1993, J. Chem. Phys., 98, 1358, 10.1063/1.464303

1992, J. Chem. Phys., 96, 6796, 10.1063/1.462569

1994, J. Chem. Phys., 100, 2975, 10.1063/1.466439

1995, J. Chem. Phys., 103, 4572, 10.1063/1.470645

1996, J. Mol. Struct.: THEOCHEM, 388, 339, 10.1016/S0166-1280(96)80048-0

1999, Mol. Phys., 96, 529, 10.1080/00268979909482990

1998, J. Phys. Chem. A, 102, 10424, 10.1021/jp9832600

1997, Spectrochim. Acta A, 53, 1051, 10.1016/S1386-1425(97)00014-0

1998, J. Chem. Phys., 109, 8864, 10.1063/1.477558

1973, J. Chem. Phys., 58, 4452, 10.1063/1.1679007

1970, J. Chem. Phys., 53, 2823, 10.1063/1.1674408

1970, J. Chem. Phys., 52, 1033, 10.1063/1.1673095

1977, J. Chem. Phys., 66, 1382, 10.1063/1.434039

1993, J. Chem. Phys., 98, 7059, 10.1063/1.464749

1996, J. Chem. Phys., 104, 5883, 10.1063/1.471320

1997, J. Chem. Phys., 107, 2451, 10.1063/1.475148

1994, J. Chem. Phys., 100, 7410, 10.1063/1.466884

1997, J. Phys. Chem., 101, 6280, 10.1021/jp970676p

1993, J. Phys. Chem., 97, 107, 10.1021/j100103a020

1996, Chem. Phys. Lett., 258, 136, 10.1016/0009-2614(96)00658-6

1989, J. Chem. Phys., 90, 1043, 10.1063/1.456157