Gastrodin Regulates PI3K/AKT-Sirt3 Signaling Pathway and Proinflammatory Mediators in Activated Microglia
Molecular Neurobiology - 2023
Tóm tắt
Activated microglia and their mediated inflammatory responses play an important role in the pathogenesis of hypoxic-ischemic brain damage (HIBD). Therefore, regulating microglia activation is considered a potential therapeutic strategy. The neuroprotective effects of gastrodin were evaluated in HIBD model mice, and in oxygen glucose deprivation (OGD)-treated and lipopolysaccharide (LPS)activated BV-2 microglia cells. The potential molecular mechanism was investigated using western blotting, immunofluorescence labeling, quantitative realtime reverse transcriptase polymerase chain reaction, and flow cytometry. Herein, we found that PI3K/AKT signaling can regulate Sirt3 in activated microglia, but not reciprocally. And gastrodin exerts anti-inflammatory and antiapoptotic effects through the PI3K/AKT-Sirt3 signaling pathway. In addition, gastrodin could promote FOXO3a phosphorylation, and inhibit ROS production in LPSactivated BV-2 microglia. Moreover, the level P-FOXO3a decreased significantly in Sirt3-siRNA group. However, there was no significant change after gastrodin and siRNA combination treatment. Notably, gastrodin might also affect the production of ROS in activated microglia by regulating the level of P-FOXO3a via Sirt3. Together, this study highlighted the neuroprotective role of PI3K/AKT-Sirt3 axis in HIBD, and the anti-inflammatory, anti-apoptotic, and anti-oxidative stress effects of gastrodin on HIBD.
Từ khóa
Tài liệu tham khảo
Guo J, Zhang X L, Bao Z R et al (2021) Gastrodin regulates the Notch Signaling Pathway and Sirt3 in activated Microglia in Cerebral hypoxic-ischemia neonatal rats and in activated BV-2 microglia [J]. Neuromolecular Med 23(3):348–362
Li SJ, Liu W, Wang JL et al (2014) The role of TNF-α, IL-6, IL-10, and GDNF in neuronal apoptosis in neonatal rat with hypoxic-ischemic encephalopathy [J]. Eur Rev Med Pharmacol Sci 18(6):905–909
Huang J Z, Ren Y, Jiang Y et al (2018) GluR1 protects hypoxic ischemic brain damage via activating akt signaling pathway in neonatal rats [J]. Eur Rev Med Pharmacol Sci 22(24):8857–8865
Jellema R K, Lima Passos V, Zwanenburg A et al (2013) Cerebral inflammation and mobilization of the peripheral immune system following global hypoxia-ischemia in preterm sheep [J]. J Neuroinflammation 10:13
Guo L, Wang D, BO G et al (2016) Early identification of hypoxic-ischemic encephalopathy by combination of magnetic resonance (MR) imaging and proton MR spectroscopy [J]. Experimental and Therapeutic Medicine 12(5):2835–2842
Yang L, Zhao H (2020) Treatment and new progress of neonatal hypoxic-ischemic brain damage [J]. Histol Histopathol 35(9):929–936
Du Plessis A J, Volpe JJ (2002) Perinatal brain injury in the preterm and term newborn [J]. Curr Opin Neurol 15(2):151–157
Liu F, Mccullough LD (2013) Inflammatory responses in hypoxic ischemic encephalopathy [J]. Acta Pharmacol Sin 34(9):1121–1130
Kreutzberg G W (1996) Microglia: a sensor for pathological events in the CNS [J]. Trends Neurosci 19(8):312–318
Yenari M A, Kauppinen T M, Swanson RA (2010) Microglial activation in Stroke: therapeutic targets [J]. Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics 7(4):378–391
El Khoury J, Hickman S E, Thomas C A et al (1998) Microglia, scavenger receptors, and the pathogenesis of Alzheimer’s Disease [J]. Neurobiol Aging 19(1 Suppl):S81–S84
Thomas W E (1992) Brain macrophages: evaluation of microglia and their functions [J]. Brain Res Brain Res Rev 17(1):61–74
Zheng Z, Yenari MA (2004) Post-ischemic inflammation: molecular mechanisms and therapeutic implications [J]. Neurol Res 26(8):884–892
Davies C A, Loddick S A, Stroemer R P et al (1998) An integrated analysis of the progression of cell responses induced by permanent focal middle cerebral artery occlusion in the rat [J]. Exp Neurol 154(1):199–212
Schroeter M, Jander S, Witte O W et al (1994) Local immune responses in the rat cerebral cortex after middle cerebral artery occlusion [J]. J Neuroimmunol 55(2):195–203
Walker D G, Lue L F (2015) Immune phenotypes of microglia in human neurodegenerative Disease: challenges to detecting microglial polarization in human brains [J]. Alzheimers Res Ther 7(1):56
Perego C, Fumagalli S, De Simoni M G (2011) Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice [J]. J Neuroinflammation 8:174
Fumagalli S, Perego C, Ortolano F et al (2013) CX3CR1 deficiency induces an early protective inflammatory environment in ischemic mice [J]. Glia 61(6):827–842
He Y, Gao Y, Zhang Q et al (2020) IL-4 switches Microglia/macrophage M1/M2 polarization and alleviates neurological damage by modulating the JAK1/STAT6 pathway following ICH [J]. Neuroscience 437:161–171
Tang Y (2016) Differential roles of M1 and M2 microglia in neurodegenerative Diseases [J]. Mol Neurobiol 53(2):1181–1194
Kaur C, Rathnasamy G, Ling EA (2013) Roles of activated microglia in hypoxia induced neuroinflammation in the developing brain and the retina [J]. J Neuroimmune Pharmacol 8(1):66–78
Del Bigio M R, Becker LE (1994) Microglial aggregation in the dentate gyrus: a marker of mild hypoxic-ischaemic brain insult in human infants [J]. Neuropathol Appl Neurobiol 20(2):144–151
Disdier C, Stonestreet BS (2020) Hypoxic-ischemic-related cerebrovascular changes and potential therapeutic strategies in the neonatal brain [J]. J Neurosci Res 98(7):1468–1484
Pappas A, Shankaran S, Mcdonald S A et al (2015) Cognitive outcomes after neonatal encephalopathy [J]. Pediatrics 135(3):e624–e634
Gluckman P D, Wyatt JS (2005) Selective head cooling with mild systemic Hypothermia after neonatal encephalopathy: multicentre randomised trial [J]. Lancet (London England) 365(9460):663–670
Kim HJ, Moon K D, Oh S Y et al (2001) Ether fraction of methanol extracts of Gastrodia elata, a traditional medicinal herb, protects against kainic acid-induced neuronal damage in the mouse hippocampus [J]. Neuroscience letters, 314(1–2): 65 – 8
Dai J N, Zong Y, Zhong L M et al (2011) Gastrodin inhibits expression of inducible NO synthase, cyclooxygenase-2 and proinflammatory cytokines in cultured LPS-stimulated microglia via MAPK pathways [J]. PLoS ONE 6(7):e21891
Peng Z, Wang S, Chen G et al (2015) Gastrodin alleviates cerebral ischemic damage in mice by improving anti-oxidant and anti-inflammation activities and inhibiting apoptosis pathway [J]. Neurochem Res 40(4):661–673
Li X, Zhang J, Zhu X et al (2015) Progesterone reduces inflammation and apoptosis in neonatal rats with hypoxic ischemic brain damage through the PI3K/Akt pathway [J]. Int J Clin Exp Med 8(5):8197–8203
Narayanankutty A (2019) PI3K/ Akt/ mTOR pathway as a therapeutic target for Colorectal Cancer: a review of preclinical and clinical evidence [J]. Curr Drug Targets 20(12):1217–1226
Kamada H, Nito C, Endo H et al (2007) Bad as a converging signaling molecule between survival PI3-K/Akt and death JNK in neurons after transient focal cerebral ischemia in rats [J]. J Cereb Blood Flow Metab 27(3):521–533
Ma X H, Gao Q, Jia Z et al (2015) Neuroprotective capabilities of TSA against cerebral ischemia/reperfusion injury via PI3K/Akt signaling pathway in rats [J]. Int J Neurosci 125(2):140–146
Yang W, Liu Y, Xu Q Q et al (2020) Sulforaphene Ameliorates Neuroinflammation and Hyperphosphorylated Tau Protein via Regulating the PI3K/Akt/GSK-3β Pathway in Experimental Models of Alzheimer’s Disease [J]. Oxid Med Cell Longev, 2020: 4754195
Fu X, Chen H (2020) C16 peptide and angiopoietin-1 protect against LPS-induced BV-2 microglial cell inflammation [J]. Life Sci 256:117894
Zhang B, Yang N, Mo ZM et al (2017) IL-17A enhances microglial response to OGD by regulating p53 and PI3K/Akt pathways with involvement of ROS/HMGB1 [J]. Front Mol Neurosci 10:271
North B J Verdine, Sirtuins (2004) Sir2-related NAD-dependent protein deacetylases [J]. Genome Biol 5(5):224
Li Y, Ma Y, Song L et al (2018) SIRT3 deficiency exacerbates p53/Parkin–mediated mitophagy inhibition and promotes mitochondrial dysfunction: implication for aged hearts [J]. Int J Mol Med 41(6):3517–3526
Jing E, Emanuelli B, Hirschey MD et al (2011) Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production [J]. Proc Natl Acad Sci U S A 108(35):14608–14613
Haigis M C, Deng C X, Finley L W et al (2012) SIRT3 is a mitochondrial Tumor suppressor: a scientific tale that connects aberrant cellular ROS, the Warburg effect, and carcinogenesis [J]. Cancer Res 72(10):2468–2472
Alhazzazi T Y, Kamarajan P (2011) SIRT3 and cancer: Tumor promoter or suppressor? [J]. Biochim Biophys Acta 1816(1):80–88
Ahn B H, Kim H S Songs et al (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis [J]. Proc Natl Acad Sci U S A 105(38):14447–14452
Wang X, Dai Y, Zhang X et al (2021) CXCL6 regulates cell permeability, proliferation, and apoptosis after ischemia-reperfusion injury by modulating Sirt3 expression via AKT/FOXO3a activation [J], vol 22. Cancer biology & therapy, pp 30–39. 1
Wang Z, Li Y, Wang Y et al (2019) Pyrroloquinoline quinine protects HK-2 cells against high glucose-induced oxidative stress and apoptosis through Sirt3 and PI3K/Akt/FoxO3a signaling pathway [J]. Biochem Biophys Res Commun 508(2):398–404
Semple BD, Blomgren K, Gimlin K et al (2013) Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species [J]. Prog Neurobiol 106–107:1–16
Min Y, Yan L, Wang Q et al (2020) Distinct residential and infiltrated macrophage populations and their phagocytic function in mild and severe neonatal hypoxic-ischemic brain damage [J]. Front Cell Neurosci 14:244
Liu SJ, Liu X Y, Li JH et al (2018) Gastrodin attenuates microglia activation through renin-angiotensin system and Sirtuin3 pathway [J]. Neurochem Int 120:49–63
Li C, Mo Z, Lei J et al (2018) Edaravone attenuates neuronal apoptosis in hypoxic-ischemic brain damage rat model via suppression of TRAIL signaling pathway [J]. Int J Biochem Cell Biol 99:169–177
Liu X H, Yan H, Xu M et al (2013) Hyperbaric oxygenation reduces long-term brain injury and ameliorates behavioral function by suppression of apoptosis in a rat model of neonatal hypoxia-ischemia [J]. Neurochem Int 62(7):922–930
Huang J, Lu W, Doycheva D M et al (2020) IRE1alpha inhibition attenuates neuronal pyroptosis via miR-125/NLRP1 pathway in a neonatal hypoxic-ischemic encephalopathy rat model [J]. J Neuroinflammation 17(1):152
Li JJ, Lu J, Kaur C et al (2009) Expression of angiotensin II and its receptors in the normal and hypoxic amoeboid microglial cells and murine BV-2 cells [J]. Neuroscience 158(4):1488–1499
Livak K J, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method [J]. Methods 25(4):402–408
Rangarajan P, Karthikeyan A, LU J et al (2015) Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia [J]. Neuroscience 311:398–414
Hasegawa M, Ogihara T, Tamai H et al (2009) Hypothermic inhibition of apoptotic pathways for combined neurotoxicity of iron and ascorbic acid in differentiated PC12 cells: reduction of oxidative stress and maintenance of the glutathione redox state [J]. Brain Res 1283:1–13
Inder T E, Volpe JJ (2000) Mechanisms of perinatal brain injury [J]. Semin Neonatol 5(1):3–16
Tan W K, Williams C E, During M J et al (1996) Accumulation of cytotoxins during the development of seizures and edema after hypoxic-ischemic injury in late gestation fetal sheep [J]. Pediatr Res 39(5):791–797
Tan W K, Williams C E, Gunn A J et al (1992) Suppression of postischemic epileptiform activity with MK-801 improves neural outcome in fetal sheep [J]. Ann Neurol 32(5):677–682
Macmanus JP, Buchan A M, Hill I E et al (1993) Global ischemia can cause DNA fragmentation indicative of apoptosis in rat brain [J]. Neurosci Lett 164(1–2):89–92
Beilharz E J, Williams C E, Dragunow M et al (1995) Mechanisms of delayed cell death following hypoxic-ischemic injury in the immature rat: evidence for apoptosis during selective neuronal loss [J]. Brain Res Mol Brain Res 29(1):1–14
Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo [J]. Science 308(5726):1314–1318
Iadecola C, Anrather J (2011) The immunology of Stroke: from mechanisms to translation [J]. Nat Med 17(7):796–808
Varnum MM (2012) The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer’s Disease brain [J]. Arch Immunol Ther Exp (Warsz) 60(4):251–266
Porta C, Rimoldi M, Raes G et al (2009) Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB [J]. Proc Natl Acad Sci U S A 106(35):14978–14983
Mantovani A, Sozzani S, Locati M et al (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes [J]. Trends Immunol 23(11):549–555
Liu Y, Gao J (2018) A review on Central Nervous System effects of Gastrodin [J]. Front Pharmacol 9:24
Yang P, Han Y (2013) Gastrodin attenuation of the inflammatory response in H9c2 cardiomyocytes involves inhibition of NF-κB and MAPKs activation via the phosphatidylinositol 3-kinase signaling [J]. Biochem Pharmacol 85(8):1124–1133
Cheng C, Chen X, Wang Y et al (2021) MSCs–derived exosomes attenuate ischemia-reperfusion brain injury and inhibit microglia apoptosis might via exosomal miR-26a-5p mediated suppression of CDK6 [J]. 27(1):67 Molecular medicine (Cambridge, Mass)
Huang Y, Yu J, Wan F et al (2014) Panaxatriol saponins attenuated oxygen-glucose deprivation injury in PC12 cells via activation of PI3K/Akt and Nrf2 signaling pathway [J]. Oxid Med Cell Longev, 2014: 978034
Sundaresan N R, Gupta M, Kim G et al (2009) Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice [J]. J Clin Invest 119(9):2758–2771
Wang B, Guo H, Li X et al (2018) Adiponectin attenuates oxygen-glucose Deprivation-Induced mitochondrial oxidative Injury and apoptosis in hippocampal HT22 cells via the JAK2/STAT3 pathway [J]. Cell Transpl 27(12):1731–1743
Moro MA, Almeida A, Bolanos J P et al (2005) Mitochondrial respiratory chain and free radical generation in Stroke [J]. Free Radic Biol Med 39(10):1291–1304
Yang K E, Jang H J, Hwang I H et al (2020) Stereoisomer-specific ginsenoside 20(S)-Rg3 reverses replicative senescence of human diploid fibroblasts via Akt-mTOR-Sirtuin signaling [J]. J Ginseng Res 44(2):341–349
Song C, Zhao J, Fu B et al (2017) Melatonin-mediated upregulation of Sirt3 attenuates sodium fluoride-induced hepatotoxicity by activating the MT1-PI3K/AKT-PGC-1α signaling pathway [J]. Free Radic Biol Med 112:616–630
Ai Mamun A, Yu H (2018) Inflammatory responses are sex specific in chronic hypoxic-ischemic encephalopathy [J]. Cell Transpl 27(9):1328–1339
Mirza MA, Ritzel R, Xu Y et al (2015) Sexually dimorphic outcomes and inflammatory responses in hypoxic-ischemic encephalopathy [J]. J Neuroinflammation 12:32
Ngwa C, Qi S, Mamun A A et al (2021) Age and sex differences in primary microglia culture: a comparative study [J]. J Neurosci Methods 364:109359
Qi S, Al Mamun A, Ngwa C et al (2021) X chromosome escapee genes are involved in ischemic sexual dimorphism through epigenetic modification of inflammatory signals [J]. J Neuroinflammation 18(1):70