Gapped Goldstones at the cut-off scale: a non-relativistic EFT

Gabriel Cuomo1, Angelo Esposito1, Emanuele Gendy1, Andrei Khmelnitsky1, Alexander Monin1, Riccardo Rattazzi1
1Theoretical Particle Physics Laboratory (LPTP), Institute of Physics, EPFL, 1015, Lausanne, Switzerland

Tóm tắt

Abstract At finite density, the spontaneous breakdown of an internal non-Abelian symmetry dictates, along with gapless modes, modes whose gap is fixed by the algebra and proportional to the chemical potential: the gapped Goldstones. Generically the gap of these states is comparable to that of other non-universal excitations or to the energy scale where the dynamics is strongly coupled. This makes it non-straightforward to derive a universal effective field theory (EFT) description realizing all the symmetries. Focusing on the illustrative example of a fully broken SU(2) group, we demonstrate that such an EFT can be constructed by carving out around the Goldstones, gapless and gapped, at small 3-momentum. The rules governing the EFT, where the gapless Goldstones are soft while the gapped ones are slow, are those of standard nonrelativistic EFTs, like for instance nonrelativistic QED. In particular, the EFT Lagrangian formally preserves gapped Goldstone number, and processes where such number is not conserved are described inclusively by allowing for imaginary parts in the Wilson coefficients. Thus, while the symmetry is manifestly realized in the EFT, unitarity is not. We comment on the application of our construction to the study of the large charge sector of conformal field theories with non-Abelian symmetries.

Từ khóa


Tài liệu tham khảo

J. Goldstone, A. Salam and S. Weinberg, Broken Symmetries, Phys. Rev. 127 (1962) 965 [INSPIRE].

Y. Nambu, Quasiparticles and Gauge Invariance in the Theory of Superconductivity, Phys. Rev. 117 (1960) 648 [INSPIRE].

S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1, Phys. Rev. 177 (1969) 2239 [INSPIRE].

C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev. 177 (1969) 2247 [INSPIRE].

S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications, Cambridge University Press (2013).

R.V. Lange, Goldstone Theorem in Nonrelativistic Theories, Phys. Rev. Lett. 14 (1965) 3 [INSPIRE].

H.B. Nielsen and S. Chadha, On How to Count Goldstone Bosons, Nucl. Phys. B 105 (1976) 445 [INSPIRE].

H. Watanabe and H. Murayama, Redundancies in Nambu-Goldstone Bosons, Phys. Rev. Lett. 110 (2013) 181601 [arXiv:1302.4800] [INSPIRE].

T. Brauner, Spontaneous Symmetry Breaking and Nambu-Goldstone Bosons in Quantum Many-Body Systems, Symmetry 2 (2010) 609 [arXiv:1001.5212] [INSPIRE].

G. Morchio and F. Strocchi, Effective Non-Symmetric Hamiltonians and Goldstone Boson Spectrum, Annals Phys. 185 (1988) 241 [Erratum ibid. 191 (1989) 400] [INSPIRE].

F. Strocchi, Symmetry Breaking, vol. 732, Springer (2008), [DOI] [INSPIRE].

A. Nicolis and F. Piazza, Implications of Relativity on Nonrelativistic Goldstone Theorems: Gapped Excitations at Finite Charge Density, Phys. Rev. Lett. 110 (2013) 011602 [Addendum ibid. 110 (2013) 039901] [arXiv:1204.1570] [INSPIRE].

A. Nicolis, R. Penco, F. Piazza and R.A. Rosen, More on gapped Goldstones at finite density: More gapped Goldstones, JHEP 11 (2013) 055 [arXiv:1306.1240] [INSPIRE].

H. Watanabe, T. Brauner and H. Murayama, Massive Nambu-Goldstone Bosons, Phys. Rev. Lett. 111 (2013) 021601 [arXiv:1303.1527] [INSPIRE].

A. Nicolis and F. Piazza, Spontaneous Symmetry Probing, JHEP 06 (2012) 025 [arXiv:1112.5174] [INSPIRE].

A. Nicolis, R. Penco, F. Piazza and R. Rattazzi, Zoology of condensed matter: Framids, ordinary stuff, extra-ordinary stuff, JHEP 06 (2015) 155 [arXiv:1501.03845] [INSPIRE].

H.J. Maris, Phonon-phonon interactions in liquid helium, Rev. Mod. Phys. 49 (1977) 341 [INSPIRE].

T. Brauner and M.F. Jakobsen, Scattering amplitudes of massive Nambu-Goldstone bosons, Phys. Rev. D 97 (2018) 025021 [arXiv:1709.01251] [INSPIRE].

A. Monin, D. Pirtskhalava, R. Rattazzi and F.K. Seibold, Semiclassics, Goldstone Bosons and CFT data, JHEP 06 (2017) 011 [arXiv:1611.02912] [INSPIRE].

W.E. Caswell and G.P. Lepage, Effective Lagrangians for Bound State Problems in QED, QCD, and Other Field Theories, Phys. Lett. B 167 (1986) 437 [INSPIRE].

P. Labelle, G.P. Lepage and U. Magnea, Order m-alpha**8 contributions to the decay rate of orthopositronium, Phys. Rev. Lett. 72 (1994) 2006 [hep-ph/9310208] [INSPIRE].

E. Braaten, H.W. Hammer and G.P. Lepage, Open Effective Field Theories from Deeply Inelastic Reactions, Phys. Rev. D 94 (2016) 056006 [arXiv:1607.02939] [INSPIRE].

W. Kohn, Cyclotron Resonance and de Haas-van Alphen Oscillations of an Interacting Electron Gas, Phys. Rev. 123 (1961) 1242 [INSPIRE].

H. Leutwyler, Nonrelativistic effective Lagrangians, Phys. Rev. D 49 (1994) 3033 [hep-ph/9311264] [INSPIRE].

M. Oshikawa and I. Affleck, Electron spin resonance in s = $$ \frac{1}{2} $$ antiferromagnetic chains, Phys. Rev. B 65 (2002) 134410.

D.B. Kaplan and A.E. Nelson, Strange Goings on in Dense Nucleonic Matter, Phys. Lett. B 175 (1986) 57 [INSPIRE].

D.T. Son and M.A. Stephanov, QCD at finite isospin density, Phys. Rev. Lett. 86 (2001) 592 [hep-ph/0005225] [INSPIRE].

T. Schäfer, D.T. Son, M.A. Stephanov, D. Toublan and J.J.M. Verbaarschot, Kaon condensation and Goldstone’s theorem, Phys. Lett. B 522 (2001) 67 [hep-ph/0108210] [INSPIRE].

G.E. Brown, V. Thorsson, K. Kubodera and M. Rho, A novel mechanism for kaon condensation in neutron star matter, Phys. Lett. B 291 (1992) 355 [INSPIRE].

S. Hellerman, D. Orlando, S. Reffert and M. Watanabe, On the CFT Operator Spectrum at Large Global Charge, JHEP 12 (2015) 071 [arXiv:1505.01537] [INSPIRE].

L. Álvarez-Gaumé, O. Loukas, D. Orlando and S. Reffert, Compensating strong coupling with large charge, JHEP 04 (2017) 059 [arXiv:1610.04495] [INSPIRE].

S. Hellerman, N. Kobayashi, S. Maeda and M. Watanabe, A Note on Inhomogeneous Ground States at Large Global Charge, JHEP 10 (2019) 038 [arXiv:1705.05825] [INSPIRE].

D. Jafferis, B. Mukhametzhanov and A. Zhiboedov, Conformal Bootstrap At Large Charge, JHEP 05 (2018) 043 [arXiv:1710.11161] [INSPIRE].

A. Nicolis and R. Penco, Mutual Interactions of Phonons, Rotons, and Gravity, Phys. Rev. B 97 (2018) 134516 [arXiv:1705.08914] [INSPIRE].

T. Brauner, Spontaneous symmetry breaking in the linear sigma model at finite chemical potential: One-loop corrections, Phys. Rev. D 74 (2006) 085010 [hep-ph/0607102] [INSPIRE].

M.E. Luke and M.J. Savage, Power counting in dimensionally regularized NRQCD, Phys. Rev. D 57 (1998) 413 [hep-ph/9707313] [INSPIRE].

V.I. Ogievetsky, Nonlinear realizations of internal and space-time symmetries, Proceedings of the Xth Winter School of Theoretical Physics in Karpacz 1 (1974) 117.

L.V. Delacrétaz, S. Endlich, A. Monin, R. Penco and F. Riva, (Re-)Inventing the Relativistic Wheel: Gravity, Cosets, and Spinning Objects, JHEP 11 (2014) 008 [arXiv:1405.7384] [INSPIRE].

I. Low and A.V. Manohar, Spontaneously broken space-time symmetries and Goldstone’s theorem, Phys. Rev. Lett. 88 (2002) 101602 [hep-th/0110285] [INSPIRE].

E.A. Ivanov and V.I. Ogievetsky, The Inverse Higgs Phenomenon in Nonlinear Realizations, Teor. Mat. Fiz. 25 (1975) 164 [INSPIRE].

M.H. Namjoo, A.H. Guth and D.I. Kaiser, Relativistic Corrections to Nonrelativistic Effective Field Theories, Phys. Rev. D 98 (2018) 016011 [arXiv:1712.00445] [INSPIRE].

G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum ibid. 55 (1997) 5853] [hep-ph/9407339] [INSPIRE].

A.H. Hoang, Heavy quarkonium dynamics, hep-ph/0204299 [INSPIRE].

I.Z. Rothstein, TASI lectures on effective field theories, 8, 2003 [hep-ph/0308266] [INSPIRE].

H.W. Griesshammer, Threshold expansion and dimensionally regularized NRQCD, Phys. Rev. D 58 (1998) 094027 [hep-ph/9712467] [INSPIRE].

H.W. Griesshammer, Power counting and β-function in NRQCD, Nucl. Phys. B 579 (2000) 313 [hep-ph/9810235] [INSPIRE].

A. Caputo, A. Esposito and A.D. Polosa, Sub-MeV Dark Matter and the Goldstone Modes of Superfluid Helium, Phys. Rev. D 100 (2019) 116007 [arXiv:1907.10635] [INSPIRE].

M.E. Luke, A.V. Manohar and I.Z. Rothstein, Renormalization group scaling in nonrelativistic QCD, Phys. Rev. D 61 (2000) 074025 [hep-ph/9910209] [INSPIRE].

S. Weinberg, Nuclear forces from chiral Lagrangians, Phys. Lett. B 251 (1990) 288 [INSPIRE].

D.B. Kaplan, Five lectures on effective field theory, nucl-th/0510023 [INSPIRE].

S. Moroz, C. Hoyos, C. Benzoni and D.T. Son, Effective field theory of a vortex lattice in a bosonic superfluid, SciPost Phys. 5 (2018) 039 [arXiv:1803.10934] [INSPIRE].

D.T. Son and M. Wingate, General coordinate invariance and conformal invariance in nonrelativistic physics: Unitary Fermi gas, Annals Phys. 321 (2006) 197 [cond-mat/0509786] [INSPIRE].

I.Z. Rothstein and P. Shrivastava, Symmetry Obstruction to Fermi Liquid Behavior in the Unitary Limit, Phys. Rev. B 99 (2019) 035101 [arXiv:1712.07797] [INSPIRE].

G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

E.A. Ivanov and J. Niederle, Gauge Formulation of Gravitation Theories. 1. The Poincaré, de Sitter and Conformal Cases, Phys. Rev. D 25 (1982) 976 [INSPIRE].

M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].

A.V. Manohar and I.W. Stewart, The Zero-Bin and Mode Factorization in Quantum Field Theory, Phys. Rev. D 76 (2007) 074002 [hep-ph/0605001] [INSPIRE].