Gamma rhythm low field magnetic stimulation alleviates neuropathologic changes and rescues memory and cognitive impairments in a mouse model of Alzheimer's disease

Junli Zhen1,2,3,4, Yanjing Qian1,2,3, Xiechuan Weng5, Wenting Su3, Jianliang Zhang1, Lihui Cai6, Lin Dong1,2,3, Haiting An1,2,3, Ruijun Su1,2,3, Jiang Wang6, Yan Zheng2,3,7, Xiaomin Wang1,2,3
1Department of Neurobiology, Capital Medical University, Beijing, China
2Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, China
3Beijing Institute for Brain Disorders, Beijing, China
4The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
5Department of Neurobiology and State Key Laboratory of Proteomics, Beijing Institute of Basic Medical Sciences, Beijing, China
6School of Electrical Engineering and Automation, Tianjin University, Tianjin, China
7Department of Physiology, Capital Medical University, Beijing, China

Tóm tắt

AbstractIntroductionThe abnormal amyloid β (Aβ) accumulation and Aβ‐related neural network dysfunction are considered central to the pathogenesis of Alzheimer's disease (AD) at the early stage. Deep‐brain reachable low field magnetic stimulation (DMS), a novel noninvasive approach that was designed to intervene the network activity in brains, has been found to alleviate stress‐related cognitive impairments.MethodsAmyloid precursor protein/presenilin‐1 transgenic mice (5XFAD) were treated with DMS, and cognitive behavior and AD‐like pathologic changes in the neurochemical and electrophysiological properties in 5XFAD mice were assessed.ResultsWe demonstrate that DMS treatment enhances cognitive performances, attenuates Aβ load, upregulates postsynaptic density protein 95 level, and promotes hippocampal long‐term potentiation in 5XFAD mouse brain. Intriguingly, the gamma burst magnetic stimulation reverses the aberrant gamma oscillations in the transgenic hippocampal network.DiscussionThis work establishes a solid foundation for the effectiveness of DMS in treating AD and proposes a future study of gamma rhythm stimulation on reorganizing rhythmic neural activity in AD brain.

Tài liệu tham khảo

10.1038/nrneurol.2011.2 10.1007/BF00308809 10.1016/j.cell.2012.02.046 10.1016/j.neuron.2009.07.003 10.1002/bies.201500004 10.1016/j.neuron.2008.02.003 10.1126/science.1162844 10.1016/j.neuron.2007.07.025 10.1038/nature05289 10.1001/archneurol.2009.15 10.1038/nn.2583 10.1073/pnas.96.6.3228 10.1016/S1474-4422(10)70119-8 10.1038/nn.4163 10.1038/nn.3422 10.1073/pnas.1405003111 10.1016/j.neurobiolaging.2015.04.016 10.1186/s40035-015-0045-x 10.1016/j.brs.2011.03.003 10.3988/jcn.2016.12.1.57 10.4137/JEN.S24004 10.1007/s10072-015-2120-6 10.1186/s13195-014-0074-1 10.1186/1756-6606-7-11 10.1186/1744-8069-5-55 10.1016/j.cell.2012.02.040 10.1038/nature08002 10.1093/cercor/bhl030 10.1016/j.cell.2014.04.009 10.1038/nature07991 10.1126/science.1252900 10.1016/j.neuron.2010.10.020 10.1242/dmm.018218 10.1016/j.exger.2014.08.011 10.1016/j.neuropharm.2015.05.027 10.1152/physrev.00014.2003 10.1523/JNEUROSCI.1202-06.2006 10.1016/S0896-6273(02)00794-8 10.1212/WNL.56.1.127 10.1093/brain/awu280 10.1016/j.neurobiolaging.2014.06.015 10.1073/pnas.1206171109 10.1038/416535a 10.1038/nm1782 10.1126/science.1128134 10.1016/j.celrep.2015.03.031 10.1016/j.neuron.2015.02.019 10.1038/nn.3764 10.1523/JNEUROSCI.1195-14.2014 10.1016/j.cell.2016.03.047 10.1016/j.biopsych.2004.12.011 10.1016/j.brs.2012.02.005 10.1016/j.nbd.2015.10.019 10.1016/j.neuron.2010.09.017