GPLFR—Global perspective and local flow registration-for forward-looking sonar images
Tóm tắt
Từ khóa
Tài liệu tham khảo
Liu J, Gong J, Guo B, Zhang W (2017) A novel adjustment model for mosaicking low-overlap sweeping images. IEEE Trans Geosci Remot Sens 55(7):4089–4097
Goshtasby AA, Nikolov S (2007) Image fusion: advances in the state of the art. Infor fus 2(8):114–118
Zanetti M, Bruzzone L (2017) A theoretical framework for change detection based on a compound multiclass statistical model of the difference image. IEEE Trans Geosci Remot Sens 56(2):1129–1143
Vakalopoulou M, Karantzalos K, Komodakis N, Paragios N (2015) Simultaneous registration and change detection in multitemporal, very high resolution remote sensing data. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 61–69
Negahdaripour S, Firoozfam P, Sabzmeydani P (2005) On processing and registration of forward-scan acoustic video imagery. In: The 2nd Canadian conference on computer and robot vision (CRV’05), IEEE, pp 452–459
Li H, Dong Y, He X, Xie S, Luo J (2014) A sonar image mosaicing algorithm based on improved sift for usv. In: 2014 IEEE International conference on mechatronics and automation, IEEE, pp 1839–1843
Negahdaripour S, Aykin M, Sinnarajah S (2011) Dynamic scene analysis and mosaicing of benthic habitats by fs sonar imaging-issues and complexities. In: OCEANS’11 MTS/IEEE KONA, IEEE, pp 1–7
Yang Z, Dan T, Yang Y (2018) Multi-temporal remote sensing image registration using deep convolutional features. IEEE Access 6:38544–38555
Balakrishnan G, Zhao A, Sabuncu MR, Guttag J, Dalca AV (2019) Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans Medical Imag 38(8):1788–1800
Zhao S, Dong Y, Chang EI, Xu Y, et al. (2019) Recursive cascaded networks for unsupervised medical image registration. In: Proceedings of the IEEE international conference on computer vision, pp 10600–10610
de Vos BD, Berendsen FF, Viergever MA, Staring M, Išgum I (2017) End-to-end unsupervised deformable image registration with a convolutional neural network. In: Deep learning in medical image analysis and multimodal learning for clinical decision support, Springer, pp 204–212
Galceran E, Djapic V, Carreras M, Williams DP (2012) A real-time underwater object detection algorithm for multi-beam forward looking sonar. IFAC Proceed Vol 45(5):306–311
Quidu I, Jaulin L, Bertholom A, Dupas Y (2012) Robust multitarget tracking in forward-looking sonar image sequences using navigational data. IEEE J Ocean Eng 37(3):417–430
Clark DE, Bell J (2005) Bayesian multiple target tracking in forward scan sonar images using the phd filter. IEE Proceed-Radar, Sonar Navigat 152(5):327–334
Petillot Y, Ruiz IT, Lane DM (2001) Underwater vehicle obstacle avoidance and path planning using a multi-beam forward looking sonar. IEEE J Ocean Eng 26(2):240–251
Hurtos N, Ribas D, Cufí X, Petillot Y, Salvi J (2015) Fourier-based registration for robust forward-looking sonar mosaicing in low-visibility underwater environments. J Field Robot 32(1):123–151
Hurtós N, Nagappa S, Cufí X, Petillot Y, Salvi J (2013) Evaluation of registration methods on two-dimensional forward-looking sonar imagery. In: 2013 MTS/IEEE OCEANS-Bergen, IEEE, pp 1–8
Hurtós N, Petillot Y, Salvi J, et al. (2012) Fourier-based registrations for two-dimensional forward-looking sonar image mosaicing. In: 2012 IEEE/RSJ International conference on intelligent robots and systems, IEEE, pp 5298–5305
Zhang J, Sohel F, Bian H, Bennamoun M, An S (2016) Forward-looking sonar image registration using polar transform. In: OCEANS 2016 MTS/IEEE Monterey, IEEE, pp 1–6
Aykin M, Negahdaripour S (2012) On feature extraction and region matching for forward scan sonar imaging. In: 2012 Oceans, IEEE, pp 1–9
Sekkati H, Negahdaripour S (2007) 3-d motion estimation for positioning from 2-d acoustic video imagery. In: Iberian conference on Pattern Recognition and Image Analysis, Springer, pp 80–88
Hurtós N, Palomeras N, Nagappa S, Salvi J (2013) Automatic detection of underwater chain links using a forward-looking sonar. In: 2013 MTS/IEEE OCEANS-Bergen, IEEE, pp 1–7
Guo Y, Wei L, Xu X (2020) A sonar image segmentation algorithm based on quantum-inspired particle swarm optimization and fuzzy clustering. Neural Comput Appl 32(22):16775–16782
Zhao S, Lau T, Luo J, Eric I, Chang C, Xu Y (2019) Unsupervised 3d end-to-end medical image registration with volume tweening network. IEEE J Biomed Health Infor 24(5):1394–1404
Hur J, Roth S (2019) Iterative residual refinement for joint optical flow and occlusion estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5754–5763
Lowe DG (1999) Object recognition from local scale-invariant features. Proceedings of the seventh IEEE International conference on computer vision, IEEE 2:1150–1157
Bay H, Tuytelaars T, Van Gool L (2006) Surf: Speeded up robust features. In: European conference on computer vision, Springer, pp 404–417
Rublee E, Rabaud V, Konolige K, Bradski G (2011) Orb: An efficient alternative to sift or surf. In: 2011 International conference on computer vision, IEEE, pp 2564–2571
Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications ACM 24(6):381–395
Moisan L, Moulon P, Monasse P (2012) Automatic homographic registration of a pair of images, with a contrario elimination of outliers. Image Process Line 2:56–73
Raguram R, Chum O, Pollefeys M, Matas J, Frahm JM (2012) Usac: a universal framework for random sample consensus. IEEE Trans Patt Anal Mach Intell 35(8):2022–2038
Tao W, Zhao J, Liu J, Zhang H (2010) Study on the side-scan sonar image matching navigation based on surf. In: 2010 International conference on electrical and control engineering, IEEE, pp 2181–2184
Gai S, Xu X, Xiong B (2020) Paper currency defect detection algorithm using quaternion uniform strength. Neural computing and applications pp 1–18
Viola P, Wells WM III (1997) Alignment by maximization of mutual information. International J Comput Vis 24(2):137–154
Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Transact Med Imag 16(2):187–198
Wang G, Xu X, Jiang X, Ding S (2016) Medical image registration based on self-adapting pulse-coupled neural networks and mutual information. Neur Comput Appl 27(7):1917–1926
Briechle K, Hanebeck UD (2001) Template matching using fast normalized cross correlation. Optical Pattern Recognition XII. Int Soci Optic Phot 4387:95–102
Sarvaiya JN, Patnaik S, Bombaywala S (2009) Image registration by template matching using normalized cross-correlation. In: 2009 International conference on advances in computing, control, and telecommunication technologies, IEEE, pp 819–822
Das A, Bhattacharya M (2011) Affine-based registration of CT and MR modality images of human brain using multiresolution approaches: comparative study on genetic algorithm and particle swarm optimization. Neural Comput Appl 20(2):223–237
Song S, Herrmann JM, Si B, Liu K, Feng X (2017) Two-dimensional forward-looking sonar image registration by maximization of peripheral mutual information. Int J Adv Robot Sys 14(6):1729881417746270
Valdenegro-Toro M (2017) Improving sonar image patch matching via deep learning. In: 2017 European conference on mobile robots (ECMR), IEEE, pp 1–6
Sarnel H, Senol Y (2011) Accurate and robust image registration based on radial basis neural networks. Neural Comput Appl 20(8):1255–1262
Ot P, dos Santos MM, Drews PLJ, da Costa Botelho SS, et al. (2017) Forward looking sonar scene matching using deep learning. In: 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), IEEE, pp 574–579
Cheng X, Zhang L, Zheng Y (2018) Deep similarity learning for multimodal medical images. Comput Method Biomech Biomed Eng: Imag Visual 6(3):248–252
DeTone D, Malisiewicz T, Rabinovich A (2016) Deep image homography estimation. arXiv:1912.02942
Chee E, Wu Z (2018) Airnet: Self-supervised affine registration for 3d medical images using neural networks. arXiv:1810.02583
Sokooti H, De Vos B, Berendsen F, Lelieveldt BP, Išgum I, Staring M (2017) Nonrigid image registration using multi-scale 3d convolutional neural networks. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 232–239
Sokooti H, de Vos B, Berendsen F, Ghafoorian M, Yousefi S, Lelieveldt BP, Isgum I, Staring M (2019) 3d convolutional neural networks image registration based on efficient supervised learning from artificial deformations. arXiv:1908.10235
Fu Y, Lei Y, Wang T, Curran WJ, Liu T, Yang X (2020) Deep learning in medical image registration: a review. Phys Medic Biol 65:20TR01
Jaderberg M, Simonyan K, Zisserman A, et al. (2015) Spatial transformer networks. In: Advances in neural information processing systems, pp 2017–2025
Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 234–241
Zou W, Luo Y, Cao W, He Z, He Z (2021) A cascaded registration network rcinet with segmentation mask. Neural Computing and Applications pp 1–17
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556
Von Gioi RG, Jakubowicz J, Morel JM, Randall G (2012) Lsd: a line segment detector. Image Process Line 2:35–55
Liu R, Lehman J, Molino P, Petroski Such F, Frank E, Sergeev A, Yosinski J (2018) An intriguing failing of convolutional neural networks and the coordconv solution. Adv Neural Infor Process Sys 31:9605–9616
Handa A, Bloesch M, Pătrăucean V, Stent S, McCormac J, Davison A (2016) gvnn: Neural network library for geometric computer vision. In: European conference on computer vision, Springer, pp 67–82
Gallego G, Yezzi A (2015) A compact formula for the derivative of a 3-d rotation in exponential coordinates. J Math Imag Vis 51(3):378–384
Langner O, Dotsch R, Bijlstra G, Wigboldus DH, Hawk ST, Van Knippenberg A (2010) Presentation and validation of the radboud faces database. Cognit Emot 24(8):1377–1388
Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv:1412.6980
Chen J, Li Y, Du Y, Frey EC (2020) Generating anthropomorphic phantoms using fully unsupervised deformable image registration with convolutional neural networks. Med Phys 47(12):6366–6380
Saad ZS, Glen DR, Chen G, Beauchamp MS, Desai R, Cox RW (2009) A new method for improving functional-to-structural MRI alignment using local pearson correlation. Neuroimage 44(3):839–848
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image process 13(4):600–612
Guo X, Xu Z, Lu Y, Pang Y (2005) An application of fourier-mellin transform in image registration. In: The Fifth international conference on computer and information technology (CIT’05), IEEE, pp 619–623
Chen X, Meng Y, Zhao Y, Williams R, Vallabhaneni SR, Zheng Y (2021) Learning unsupervised parameter-specific affine transformation for medical images registration. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 24–34
Mok TC, Chung AC (2020) Large deformation diffeomorphic image registration with laplacian pyramid networks. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 211–221