Fuzzy statistical classification method for multiband image fusion

M. Germain1, M. Voorons2, J.M. Boucher1, G.B. Benie2
1Ecole Nationale Superieure Telecommunications Bretagne, Brest, France
2Centre dApplications et Recherche en Teledetection, Universite de Sherbrooke, QUE, Canada

Tóm tắt

We propose a new fusion algorithm based on the Dempster-Shafer theory of evidence. The main interest of this method is a new distribution of mass functions. Generally the methods used are the mass consonant distribution and the partially mass consonant distribution. The originality of this work is to define uncertain and inaccurate data by using a fuzzy statistical classification algorithm such as FSEM (Fuzzy Stochastic Estimation Maximization). Application to multiband image fusion produces interesting results for classification.

Từ khóa

#Image fusion #Remote sensing #Classification algorithms #Bayesian methods #Uncertainty #Distribution functions #Stochastic processes #Fuzzy reasoning #Statistical analysis #Pixel

Tài liệu tham khảo

10.1109/36.239902 bloch, 1994, Fusion de donne?es en traitement d'images: mode?les d'information et de de?cision, Traitement du Signal, 2, 435 10.1214/aos/1176350603 10.1109/ICOSP.2000.893377 10.1006/gmip.1997.0431 quelle, 1996, Adaptive parameter estimation and unsupervised image segmentation, Machine Graphics and Vision, 5, 613 dempster, 1968, Generalisation of bayesian inference, Journal of Royal Statistical Society Series B, 30, 205 10.1109/83.557353 verikas, 2000, Combining neural networks, fuzzy sets, and evidence theory based approaches for analysing colour images, neural networks 2000, IJCNN 2000 Proceedings of the IEEE-INNS-ENNS International Joint Conference on, 2, 297 shafer, 1975, A Mathematical Theory of Evidence 10.1109/TSMC.1986.4309005 10.1016/S0019-9958(65)90241-X