Fuzzy cross-entropy
Tóm tắt
Từ khóa
Tài liệu tham khảo
De Luca, A, Termini, S: A definition of nonprobabilistic entropy in the setting of fuzzy sets theory. Inf. Control. 20, 301–312 (1972).
Yager, RR: On measures of fuzziness and negation, part I: membership in the unit interval. Int. J. General Syst. 5, 221–229 (1979).
Kaufmann, A: Introduction to the Theory of Fuzzy Subsets. Academic Press, New York (1975).
Pal, NR, Pal, SK: Higher order fuzzy entropy and hybrid entropy of a set. Inf. Sci. 61, 211–231 (1992).
Liu, B: A survey of entropy of fuzzy variables. J. Uncertain Syst. 1(1), 4–13 (2007).
Li, P, Liu, B: Entropy of credibility distributions for fuzzy variables. IEEE Trans. Fuzzy Syst. 16(1), 123–129 (2008).
Li, X, Liu, B: Maximum entropy principle for fuzzy variables. Int. J. Uncertainty Fuzziness Knowledge-Based Syst. 15(Supp 2), 40–48 (2007).
Liu, B, Liu, YK: Expected value of fuzzy variable and fuzzy expected value models. IEEE Trans. Fuzzy Syst. 10(4), 445–450 (2002).