Future Changes of Wind Speed and Wind Energy Potentials in EURO‐CORDEX Ensemble Simulations

Journal of Geophysical Research D: Atmospheres - Tập 123 Số 12 - Trang 6373-6389 - 2018
Julia Moemken1,2, Mark Reyers1, Hendrik Feldmann2, Joaquim G. Pinto2
1Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany
2Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

Tóm tắt

AbstractRenewable energy production is strongly influenced by weather and climate. Regional climate projections can be useful to quantify climate change impacts on renewable energies. With this aim, we analyze future changes of wind speed and wind energy potentials using a multimodel ensemble of EURO‐CORDEX simulations at 12 km and three‐hourly resolution, considering nine different global and regional climate model chains. A comparison between modeled historical 10 m wind speeds and ERA‐Interim‐driven evaluation runs for the same regional climate models uncovers some substantial model biases. The bias‐corrected 10 m wind speeds are extrapolated to the hub height of a wind turbine to derive gridded wind energy output (Eout). The ensemble mean responses project only small changes of mean annual and winter Eout for large parts of Europe in future decades, but a considerable decrease for summer Eout. In terms of variability, increasing intraannual and interdaily variabilities are projected for large parts of northern, central, and eastern Europe. While the ensemble spread is quite large for interdaily variability, results are more robust for intraannual variability. With respect to wind speed characteristics relevant for wind energy production, a robust increase in the occurrence of low wind speeds (<3 m/s) is detected. Due to a combination of higher annual mean Eout and lower intraannual variability, climate change could be beneficial for regions like Baltic and Aegean Sea. For large parts of Germany, France, and Iberia, a lower mean Eout and increased intraannual variability may imply larger temporal/spatial fluctuations in future wind energy production and therefore a more challenging wind energy management.

Từ khóa


Tài liệu tham khảo

10.1016/j.renene.2012.02.008

10.3402/tellusa.v64i0.17471

Bruckner T., 2014, Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

10.1016/j.renene.2014.10.024

10.1002/qj.828

10.3354/cr00853

10.1016/j.enpol.2013.05.093

10.3390/resources4010155

European Wind Energy Association(2016).Wind in power—2015 European Statistics European Wind Energy Association Report EWEA (12 pp.). Retrieved fromhttps://windeurope.org/wp‐content/uploads/files/about‐wind/statistics/EWEA‐Annual‐Statistics‐2015.pdf (accessed 12 December 2016).

10.1002/qj.2364

10.1017/CBO9781139151153.014

Giorgi F., 2009, Addressing climate information needs at the regional level: The CORDEX framework, Bulletin ‐ World Meteorological Organization, 58, 175

10.1007/s10584-011-0348-6

10.1029/2012GL054014

10.1002/2013JD020882

10.1029/2008JD010201

10.1029/2004EO520005

10.1175/JAMC-D-12-086.1

International Electrotechnical Commission, 2005, Wind turbines—Part 1: Design requirements. IEC 61400–1, 179

International Electrotechnical Commission, 2005, Wind turbines—Part 3: Design requirements for offshore wind turbines. IEC 61400–3, 263

10.1007/s10113-013-0499-2

10.1038/ncomms10014

Justus C. G., 1978, Winds and wind system performance

Kjellström E. Bärring L. Hansson U. Jones C. Samuelsson P. Rummukainen M. et al. (2005).A 140‐year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3)(SMHI Reports Meteorology and Climatology vol. 108 SMHI SE‐60176 54 pp.). Norrköping Sweden.

10.1111/j.1600-0870.2010.00475.x

10.5194/gmd-7-1297-2014

Kupiainen M. Samuelsson P. Jones C. Jansson C. Willén U. Wang S. &Döscher R.(2011).Rossby Centre regional atmospheric model RCA4. Rossby Centre Newsletter June.

10.1002/9781119994367

10.1007/s10584-011-0156-z

10.1029/2009GL038401

Moccia J. Wilkes J. Pineda I. &Corbetta G.(2014).Wind energy scenarios for 2020. European Wind Energy Association Report EWEA (3 pp.). Retrieved fromhttp://www.ewea.org/fileadmin/files/library/publications/scenarios/EWEA‐Wind‐energy‐scenarios‐2020.pdf (accessed 12 December 2016).

10.3402/tellusa.v68.29199

10.1111/j.1600-0870.2010.00466.x

10.1002/we.489

10.3354/cr01111

10.1016/j.rser.2009.07.028

10.1007/s10584-013-0889-y

10.1007/s00382-010-0955-3

10.3354/cr029183

10.1002/joc.4382

10.1002/joc.3975

10.1127/0941-2948/2008/0309

10.1016/j.jmarsys.2007.02.026

10.1111/j.1600-0870.2010.00478.x

Schlichting H., 1968, Boundary layer theory

10.1175/2011BAMS3015.1

10.1175/BAMS-D-11-00094.1

10.1088/1748-9326/11/3/034013

10.1007/s10584-014-1291-0

10.1175/2007JCLI1992.1

Van der Linden P., 2009, ENSEMBLES: Climate change and its impacts: Summary of research and results from ENSEMBLES project

10.1007/s00382-013-1714-z

10.1038/ncomms4196

10.1073/pnas.1704339114

Wilkes J., 2012, Wind in power—2011 European Statistics European Wind Energy Association Report, 11

10.5194/esd-8-1047-2017

10.1038/ngeo1438

10.1175/JCLI-D-14-00823.1