Functional genomics identifies five distinct molecular subtypes with clinical relevance and pathways for growth control in epithelial ovarian cancer

EMBO Molecular Medicine - Tập 5 Số 7 - Trang 1051-1066 - 2013
Tuan Zea Tan1, Qing Hao Miow1,2, Ruby Yun‐Ju Huang1,3, M. K. Wong1, Jieru Ye1, Jieying Amelia Lau1, Meng Wu1, Luqman Hakim Bin Abdul Hadi1, Richie Soong1, Mahesh Choolani3, Ben Davidson4,5, Jahn M. Nesland4,5, Lingzhi Wang1,6, Noriomi Matsumura7, Masaki Mandai7, Ikuo Konishi7, Boon Cher Goh1,8,6, Jeffrey T. Chang9, Jean Paul Thiery1,10,11, Seiichi Mori1,10,12,13
1Cancer Science Institute of Singapore, National University of Singapore, Singapore
2NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
3Department of Obstetrics and Gynecology, National University Health System, Singapore
4Division of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
5Faculty of Medicine University of Oslo Institute of Clinical Medicine Oslo Norway
6Department of Pharmacology, National University of Singapore, Singapore
7Department of Obstetrics and Gynecology, Kyoto University, Kyoto, Japan
8Department of Hematology and Oncology, National University Health System, Singapore
9Department of Integrative Biology and Pharmacology University of Texas Health Science Center at Houston TX USA
10Department of Biochemistry, National University of Singapore, Singapore
11Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
12Division of Cancer Genomics Cancer Institute of Japanese Foundation for Cancer Research 3‐8‐31 Ariake Koto‐ku, Tokyo Japan
13Present Address: Division of Cancer Genomics Cancer Institute of Japanese Foundation for Cancer Research Koto‐ku Tokyo Japan

Tóm tắt

AbstractEpithelial ovarian cancer (EOC) is hallmarked by a high degree of heterogeneity. To address this heterogeneity, a classification scheme was developed based on gene expression patterns of 1538 tumours. Five, biologically distinct subgroups — Epi‐A, Epi‐B, Mes, Stem‐A and Stem‐B — exhibited significantly distinct clinicopathological characteristics, deregulated pathways and patient prognoses, and were validated using independent datasets. To identify subtype‐specific molecular targets, ovarian cancer cell lines representing these molecular subtypes were screened against a genome‐wide shRNA library. Focusing on the poor‐prognosis Stem‐A subtype, we found that two genes involved in tubulin processing, TUBGCP4 and NAT10, were essential for cell growth, an observation supported by a pathway analysis that also predicted involvement of microtubule‐related processes. Furthermore, we observed that Stem‐A cell lines were indeed more sensitive to inhibitors of tubulin polymerization, vincristine and vinorelbine, than the other subtypes. This subtyping offers new insights into the development of novel diagnostic and personalized treatment for EOC patients.

Từ khóa


Tài liệu tham khảo

10.1038/35000501

10.1158/1541-7786.MCR-08-0193

10.1056/NEJMoa052985

10.1038/nature08460

10.1038/nrc2644

10.1038/nature04296

10.1145/307400.307439

10.1186/1755-8794-2-71

10.1002/ijc.27711

10.1186/bcr1517

10.1371/journal.pone.0017238

10.1073/pnas.1109363108

10.1101/gad.2017311

Cohen J, 1988, Statistical Power Analysis for the Behavioral Sciences

10.1093/bioinformatics/bti756

10.1002/path.2547

10.1007/978-1-4757-3247-4

10.1083/jcb.147.4.857

10.1093/fampra/14.4.324

10.1073/pnas.0912708107

10.1093/bioinformatics/btg405

10.1200/JCO.1996.14.4.1364

10.1016/j.humpath.2009.04.017

10.1093/jnci/djr545

10.1371/journal.pone.0018064

10.1158/0008-5472.CAN-05-3694

10.1002/cncr.11476

10.1097/GCO.0b013e32835c0410

10.1200/JCO.2007.11.0593

10.1002/ijc.23579

10.1038/417455a

10.1158/0008-5472.CAN-09-3833

10.1111/j.1525-1438.2007.00908.x

10.1111/IGC.0b013e3181a3cf55

10.1093/biostatistics/kxj037

10.1016/j.csda.2009.04.009

10.1097/PAS.0b013e318212ae22

KonaviR(1995) A study of cross‐validation and bootstrap for accuracy estimation and model selection. In 14th International Joint Conference on Artificial intelligence pp1137-1143

10.1200/JCO.2009.27.5719

10.1210/en.2007-1415

10.1198/016214508000000454

10.1021/bi953037i

10.1073/pnas.0810485105

10.1016/0163-7258(84)90025-1

10.1159/000012187

10.1101/gr.108803.110

10.1056/NEJM199601043340101

10.1186/1471-2407-10-222

10.1016/j.cell.2006.01.040

10.1016/j.ccr.2009.10.018

10.1016/j.ygyno.2012.11.038

10.1182/blood-2004-07-2947

10.1038/onc.2009.139

10.1038/378638a0

10.1083/jcb.142.3.775

10.1016/j.ccr.2006.10.008

10.1593/tlo.09199

10.1038/35021093

10.1038/nrclinonc.2009.112

10.1038/ng0506-500

10.1038/nmeth924

10.1097/CCO.0b013e32833500d2

10.1016/j.cell.2009.03.017

10.1016/j.yexcr.2009.03.007

10.1186/gb-2011-12-10-r104

10.1126/science.1101637

10.1073/pnas.191367098

10.1002/sim.4106

10.1002/lary.23688

10.1038/nature10166

10.1007/978-1-4757-3294-8

10.1158/1078-0432.CCR-07-4959

10.1158/1078-0432.CCR-08-0196

10.1038/modpathol.2009.92

10.1038/nrc3144

10.1016/j.ccr.2009.12.020

Verhaak RG, 2013, Prognostically relevant gene signatures of high‐grade serous ovarian carcinoma, J Clin Invest, 123, 517

10.1001/jama.291.16.1972

10.1172/JCI3523