Functional Data Approach for Short-Term Electricity Demand Forecasting

Mathematical Problems in Engineering - Tập 2022 - Trang 1-14 - 2022
Ismail Shah1, Faheem Jan1, Sajid Ali1
1Department of Statistics, Quaid-i-Azam University 45320, Islamabad, Pakistan

Tóm tắt

In today’s liberalized electricity markets, modeling and forecasting electricity demand data are highly important for the effective management of the power system. However, electricity demand forecasting is a challenging task due to the specific features it exhibits. These features include the presence of extreme values, spikes or jumps, multiple periodicities, long trend, and bank holiday effect. In addition, the forecasts are required for a complete day as electricity demand is decided a day before the physical delivery. Therefore, this study aimed to investigate the forecasting performance of models based on functional data analysis, a relatively less explored area in energy research. To this end, the demand time series is first treated for the extreme values. The filtered series is then divided into deterministic and stochastic components. The generalized additive modeling technique is used to model the deterministic component, whereas functional autoregressive (FAR), FAR with exogenous variable (FARX), and classical univariate AR models are used to model and forecast the stochastic component. Data from the Nord Pool electricity market are used, and the one-day-ahead out-of-sample forecast obtained for a whole year is evaluated using different forecasting accuracy measures. The results indicate that the functional modeling approach produces superior forecasting results, while FARX outperforms FAR and classical AR models. More specifically, for the NP electricity demand, FARX produces a MAPE value of 2.74, whereas 6.27 and 9.73 values of MAPE are obtained for FAR and AR models, respectively.

Từ khóa


Tài liệu tham khảo

D. W. Bunn, 2004, Structural and behavioural foundations of competitive electricity prices, Power, 70, 90

10.1007/s12667-019-00356-w

10.1016/j.ejor.2009.10.003

ShahI.Modeling and forecasting electricity market variables2016Padua, ItalyUniversity of PadovaThesis

10.1155/2018/5194810

10.1016/j.ijepes.2016.01.034

10.3390/en10010044

10.2202/1558-3708.1362

10.3390/en12050931

10.1016/j.energy.2018.07.088

10.1016/j.aei.2017.11.002

10.1016/j.energy.2018.07.168

10.1109/tpwrs.2005.846044

10.1016/j.eneco.2018.07.033

10.3390/en10111868

W. Bin, 2019, Short-term forecast analysis of power load based on time series arima model, Shihezi Science and Technology, 3, 43

G. y. Lv, 2004, Middle and long term electricity demand forecasting based on multi-exponents sliding forecast model, East China Electric Power, 7, 8

10.1155/2019/3262591

10.1016/j.energy.2009.06.034

10.1016/j.apenergy.2014.07.064

10.1155/2021/6613604

10.1155/2020/4181045

10.3390/en11071636

10.1016/j.ijepes.2015.11.046

10.1016/j.apenergy.2016.12.130

10.1109/access.2021.3126545

J. Ramsay, 1997, Functional Data Analysis, springer series in statistics

J. Ramsay, 2005, Tools for Exploring Functional Data, Functional Data Analysis, 19, 10.1007/b98888

10.1007/bf02595862

F. Ferraty, 2006, Nonparametric Functional Data Analysis: Theory and Practice

F. Ferraty, 2011, The Oxford Handbook of Functional Data Analaysis

10.1016/j.matcom.2010.04.027

L. Horváth, 2012, Inference for functional data with applications, 10.1007/978-1-4614-3655-3

10.1002/for.2624

10.1007/978-94-011-3222-0_38

10.1214/09-aos768

10.1016/j.ecosta.2016.10.009

10.1002/for.2467

10.1007/s11222-016-9712-8

10.1016/j.ijforecast.2019.08.003

10.1016/j.jmva.2007.04.010

10.1016/j.ins.2015.11.039

J. P. González, 2017, Functional time series forecasting in electricity markets: a novel parametric approach, 545

S. Gallón, 2021, Forecasting the colombian electricity spot price under a functional approach, International Journal of Energy Economics and Policy, 11, 67

10.1016/j.ijforecast.2009.05.015

10.1111/j.1467-9868.2006.00569.x

10.1080/02664760903214395

10.1080/01621459.2012.722900

10.1080/07350015.2015.1092976

10.1080/01621459.2019.1604362

10.1111/jtsa.12577

10.3390/en15093423

10.1109/access.2021.3100076

S. Borovkova, 2006, Modelling electricity prices by the potential jump-diffusion, Stochastic Finance, 239, 10.1007/0-387-28359-5_9

10.1109/eem.2015.7216741

M. Loève, 1946, Fonctions aléatoires à décomposition orthogonale exponentielle, La Revue Scientifique, 84, 159

J. O. Ramsay, 2002, Applied functional data analysis: methods and case studies, 10.1007/b98886

10.1007/s10182-013-0213-1

10.1080/01621459.2014.909317

10.1016/j.apenergy.2018.06.137

10.1111/j.1467-9892.2012.00816.x

10.1007/s00477-008-0213-y

A. Aue, 2012, On the Prediction of Stationary Functional Time Series

10.1016/j.econlet.2011.08.010