Fully‑automated deep‑learning segmentation of pediatric cardiovascular magnetic resonance of patients with complex congenital heart diseases

Journal of Cardiovascular Magnetic Resonance - Tập 22 Số 1 - Trang 80 - 2020
Saeed Karimi-Bidhendi1, Arghavan Arafati2, Andrew L. Cheng3, Yi-Hsin Wu1, Arash Kheradvar2, Hamid Jafarkhani1
1Center for Pervasive Communications and Computing, University of California, Irvine, Irvine, USA
2Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, USA
3The Keck School of Medicine, University of Southern California and Children’s Hospital Los Angeles, Los Angeles, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Best, 2016, Long-term survival of individuals born with congenital heart disease: a systematic review and meta-analysis, J Am Heart Assoc, 5, 002846, 10.1161/JAHA.115.002846

Oster, 2013, Temporal trends in survival among infants with critical congenital heart defects, Pediatrics, 131, 1502, 10.1542/peds.2012-3435

Yuan, 2002, Contrast-enhanced high resolution mri for atherosclerotic carotid artery tissue characterization, J Magn Reson Imag, 15, 62, 10.1002/jmri.10030

Lima, 2004, Cardiovascular magnetic resonance imaging: current and emerging applications, J Am Coll Cardiol, 44, 1164, 10.1016/j.jacc.2004.06.033

Avendi, 2016, A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac mri, Med Image Anal, 30, 108, 10.1016/j.media.2016.01.005

Avendi, 2017, Automatic segmentation of the right ventricle from cardiac mri using a learning-based approach, Magn Reson Med, 78, 2439, 10.1002/mrm.26631

Bai, 2018, Automated cardiovascular magnetic resonance image analysis with fully convolutional networks, J Cardiovasc Magn Reson, 20, 65, 10.1186/s12968-018-0471-x

Backhaus, 2019, Fully automated quantification of biventricular volumes and function in cardiovascular magnetic resonance: applicability to clinical routine settings, J Cardiovasc Magn Reson, 21, 24, 10.1186/s12968-019-0532-9

Arafati, 2019, Artificial intelligence in pediatric and adult congenital cardiac mri: an unmet clinical need, Cardiovascular diagnosis and therapy, 9, 310, 10.21037/cdt.2019.06.09

The 2015 Kaggle Second Annual Data Science Bowl. httpp://http://www.kaggle.com/c/second-annual-data-science-bowl(2015)

Petersen, 2015, Uk biobank's cardiovascular magnetic resonance protocol, J Cardiovasc Magn Reson, 18, 8, 10.1186/s12968-016-0227-4

Petitjean, 2011, A review of segmentation methods in short axis cardiac mr images, Med Image Anal, 15, 169, 10.1016/j.media.2010.12.004

Petitjean, 2015, Right ventricle segmentation from cardiac mri: a collation study, Med Image Anal, 19, 187, 10.1016/j.media.2014.10.004

Litjens, 2017, A survey on deep learning in medical image analysis, Med Image Analy, 42, 60, 10.1016/j.media.2017.07.005

Kazeminia S, Baur C, Kuijper A, van Ginneken B, Navab N, Albarqouni S, Mukhopadhyay A. Gans for medical image analysis. arXiv:1809.06222. https://arxiv.org/abs/1809.06222

Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434. https://arxiv.org/abs/1511.06434

Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Cham: Springer; 2015. p. 234–41.

Tran PV. A fully convolutional neural network for cardiac segmentation in short-axis mri. arXiv:1604.00494. https://arxiv.org/abs/1604.00494

Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In:Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

Roth, 2015, Improving computer-aided detection using convolutional neural networks and random view aggregation, IEEE Trans Med Imaging, 35, 1170, 10.1109/TMI.2015.2482920

Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256(2010)

Nesterov, 1983, A method for unconstrained convex minimization problem with the rate of convergence o (1/kˆ2), Doklady AN USSR, 269, 543

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training gans. In: Advances in Neural Information Processing Systems, pp. 2234–2242 (2016)

Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv:1412.6980. https://arxiv.org/abs/1412.6980

Fisher, R.A., et al.: Statistical methods for research workers. Statistical methods for research workers. (llth ed. revised) (1950)

Koo, 2016, A guideline of selecting and reporting intraclass correlation coefficients for reliability research, Journal of chiropractic medicine, 15, 155, 10.1016/j.jcm.2016.02.012

Tavakoli, 2013, A survey of shaped-based registration and segmentation techniques for cardiac images, Comput Vis Image Underst, 117, 966, 10.1016/j.cviu.2012.11.017

Queirós, 2014, Fast automatic myocardial segmentation in 4d cine cmr datasets, Med Image Analy, 18, 1115, 10.1016/j.media.2014.06.001

Hajiaghayi, M., Groves, E.M., Jafarkhani, H., Kheradvar, A.: A 3-d active contour method for automated segmentation of the left ventricle from magnetic resonance images. In: IEEE Transactions on Biomedical Engineering 64(1), 134–144 (2017)

Dreijer, 2013, Left ventricular segmentation from mri datasets with edge modelling conditional random fields, BMC Med Imaging, 13, 24, 10.1186/1471-2342-13-24

Snaauw G, Gong D, Maicas G, van den Hengel A, Niessen WJ, Verjans J, Carneiro G. End-to-end diagnosis and segmentation learning from cardiac magnetic resonance imaging. In: Proceedings of the IEEE 16th international symposium on biomedical imaging; 2019. p. 802–5.

Yu L, Yang X, Qin J, Heng P-A. 3d fractalnet: dense volumetric segmentation for cardiovascular mri volumes. In: Reconstruction, Segmentation, and Analysis of Medical Images. Springer, Cham;2016. pp. 103–110.

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y.Generative adversarial nets. In: Advances in Neural Information Processing Systems, 2014; pp. 2672–2680

Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, 2017; pp.6626–6637

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and PatternRecognition, 2015; pp. 1–9 (2015)